/* * \x20@(#)Pattern.java 1.111 05/01/04 * * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. */ package java.util.regex; import java.security.AccessController; import java.security.PrivilegedAction; import java.text.CharacterIterator; import sun.text.Normalizer; import java.util.ArrayList; import java.util.HashMap; /** * A compiled representation of a regular expression. * *

A regular expression, specified as a string, must first be compiled into * an instance of this class. The resulting pattern can then be used to create * a {@link Matcher} object that can match arbitrary {@link * java.lang.CharSequence character sequences} against the regular * expression. All of the state involved in performing a match resides in the * matcher, so many matchers can share the same pattern. * *

A typical invocation sequence is thus * *

 * Pattern p = Pattern.{@link #compile compile}("a*b");
 * Matcher m = p.{@link #matcher matcher}("aaaaab");
 * boolean b = m.{@link Matcher#matches matches}();
* *

A {@link #matches matches} method is defined by this class as a * convenience for when a regular expression is used just once. This method * compiles an expression and matches an input sequence against it in a single * invocation. The statement * *

 * boolean b = Pattern.matches("a*b", "aaaaab");
* * is equivalent to the three statements above, though for repeated matches it * is less efficient since it does not allow the compiled pattern to be reused. * *

Instances of this class are immutable and are safe for use by multiple * concurrent threads. Instances of the {@link Matcher} class are not safe for * such use. * * * *

Summary of regular-expression constructs

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
ConstructMatches
 
Characters
xThe character x
\\The backslash character
\0nThe character with octal value 0n * (0 <= n <= 7)
\0nnThe character with octal value 0nn * (0 <= n <= 7)
\0mnnThe character with octal value 0mnn * (0 <= m <= 3, * 0 <= n <= 7)
\xhhThe character with hexadecimal value 0xhh
\uhhhhThe character with hexadecimal value 0xhhhh
\tThe tab character ('\u0009')
\nThe newline (line feed) character ('\u000A')
\rThe carriage-return character ('\u000D')
\fThe form-feed character ('\u000C')
\aThe alert (bell) character ('\u0007')
\eThe escape character ('\u001B')
\cxThe control character corresponding to x
 
Character classes
[abc]a, b, or c (simple class)
[^abc]Any character except a, b, or c (negation)
[a-zA-Z]a through z * or A through Z, inclusive (range)
[a-d[m-p]]a through d, * or m through p: [a-dm-p] (union)
[a-z&&[def]]d, e, or f (intersection)
[a-z&&[^bc]]a through z, * except for b and c: [ad-z] (subtraction)
[a-z&&[^m-p]]a through z, * and not m through p: [a-lq-z](subtraction)
 
Predefined character classes
.Any character (may or may not match line terminators)
\dA digit: [0-9]
\DA non-digit: [^0-9]
\sA whitespace character: [ \t\n\x0B\f\r]
\SA non-whitespace character: [^\s]
\wA word character: [a-zA-Z_0-9]
\WA non-word character: [^\w]
 
POSIX character classes (US-ASCII only)
\p{Lower}A lower-case alphabetic character: [a-z]
\p{Upper}An upper-case alphabetic character:[A-Z]
\p{ASCII}All ASCII:[\x00-\x7F]
\p{Alpha}An alphabetic character:[\p{Lower}\p{Upper}]
\p{Digit}A decimal digit: [0-9]
\p{Alnum}An alphanumeric character:[\p{Alpha}\p{Digit}]
\p{Punct}Punctuation: One of !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~
\p{Graph}A visible character: [\p{Alnum}\p{Punct}]
\p{Print}A printable character: [\p{Graph}\x20]
\p{Blank}A space or a tab: [ \t]
\p{Cntrl}A control character: [\x00-\x1F\x7F]
\p{XDigit}A hexadecimal digit: [0-9a-fA-F]
\p{Space}A whitespace character: [ \t\n\x0B\f\r]
 
java.lang.Character classes (simple java character type)
\p{javaLowerCase}Equivalent to java.lang.Character.isLowerCase()
\p{javaUpperCase}Equivalent to java.lang.Character.isUpperCase()
\p{javaWhitespace}Equivalent to java.lang.Character.isWhitespace()
\p{javaMirrored}Equivalent to java.lang.Character.isMirrored()
 
Classes for Unicode blocks and categories
\p{InGreek}A character in the Greek block (simple block)
\p{Lu}An uppercase letter (simple category)
\p{Sc}A currency symbol
\P{InGreek}Any character except one in the Greek block (negation)
[\p{L}&&[^\p{Lu}]] Any letter except an uppercase letter (subtraction)
 
Boundary matchers
^The beginning of a line
$The end of a line
\bA word boundary
\BA non-word boundary
\AThe beginning of the input
\GThe end of the previous match
\ZThe end of the input but for the final * terminator, if any
\zThe end of the input
 
Greedy quantifiers
X?X, once or not at all
X*X, zero or more times
X+X, one or more times
X{n}X, exactly n times
X{n,}X, at least n times
X{n,m}X, at least n but not more than m times
 
Reluctant quantifiers
X??X, once or not at all
X*?X, zero or more times
X+?X, one or more times
X{n}?X, exactly n times
X{n,}?X, at least n times
X{n,m}?X, at least n but not more than m times
 
Possessive quantifiers
X?+X, once or not at all
X*+X, zero or more times
X++X, one or more times
X{n}+X, exactly n times
X{n,}+X, at least n times
X{n,m}+X, at least n but not more than m times
 
Logical operators
XYX followed by Y
X|YEither X or Y
(X)X, as a capturing group
 
Back references
\nWhatever the nth * capturing group matched
 
Quotation
\Nothing, but quotes the following character
\QNothing, but quotes all characters until \E
\ENothing, but ends quoting started by \Q
 
Special constructs (non-capturing)
(?:X)X, as a non-capturing group
(?idmsux-idmsux) Nothing, but turns match flags on - off
(?idmsux-idmsux:X)  X, as a non-capturing group with the * given flags on - off
(?=X)X, via zero-width positive lookahead
(?!X)X, via zero-width negative lookahead
(?<=X)X, via zero-width positive lookbehind
(?<!X)X, via zero-width negative lookbehind
(?>X)X, as an independent, non-capturing group
* *
* * *
*

Backslashes, escapes, and quoting

* *

The backslash character ('\') serves to introduce escaped * constructs, as defined in the table above, as well as to quote characters * that otherwise would be interpreted as unescaped constructs. Thus the * expression \\ matches a single backslash and \{ matches a * left brace. * *

It is an error to use a backslash prior to any alphabetic character that * does not denote an escaped construct; these are reserved for future * extensions to the regular-expression language. A backslash may be used * prior to a non-alphabetic character regardless of whether that character is * part of an unescaped construct. * *

Backslashes within string literals in Java source code are interpreted * as required by the Java Language * Specification as either Unicode * escapes or other character * escapes. It is therefore necessary to double backslashes in string * literals that represent regular expressions to protect them from * interpretation by the Java bytecode compiler. The string literal * "\b", for example, matches a single backspace character when * interpreted as a regular expression, while "\\b" matches a * word boundary. The string literal "\(hello\)" is illegal * and leads to a compile-time error; in order to match the string * (hello) the string literal "\\(hello\\)" * must be used. * * *

Character Classes

* *

Character classes may appear within other character classes, and * may be composed by the union operator (implicit) and the intersection * operator (&&). * The union operator denotes a class that contains every character that is * in at least one of its operand classes. The intersection operator * denotes a class that contains every character that is in both of its * operand classes. * *

The precedence of character-class operators is as follows, from * highest to lowest: * *

* * * * * * * * * * * * * * * *
1    Literal escape    \x
2    Grouping[...]
3    Rangea-z
4    Union[a-e][i-u]
5    Intersection[a-z&&[aeiou]]
* *

Note that a different set of metacharacters are in effect inside * a character class than outside a character class. For instance, the * regular expression . loses its special meaning inside a * character class, while the expression - becomes a range * forming metacharacter. * * *

Line terminators

* *

A line terminator is a one- or two-character sequence that marks * the end of a line of the input character sequence. The following are * recognized as line terminators: * *

*

If {@link #UNIX_LINES} mode is activated, then the only line terminators * recognized are newline characters. * *

The regular expression . matches any character except a line * terminator unless the {@link #DOTALL} flag is specified. * *

By default, the regular expressions ^ and $ ignore * line terminators and only match at the beginning and the end, respectively, * of the entire input sequence. If {@link #MULTILINE} mode is activated then * ^ matches at the beginning of input and after any line terminator * except at the end of input. When in {@link #MULTILINE} mode $ * matches just before a line terminator or the end of the input sequence. * * *

Groups and capturing

* *

Capturing groups are numbered by counting their opening parentheses from * left to right. In the expression ((A)(B(C))), for example, there * are four such groups:

* *
* * * * * * * * *
1    ((A)(B(C)))
2    (A)
3    (B(C))
4    (C)
* *

Group zero always stands for the entire expression. * *

Capturing groups are so named because, during a match, each subsequence * of the input sequence that matches such a group is saved. The captured * subsequence may be used later in the expression, via a back reference, and * may also be retrieved from the matcher once the match operation is complete. * *

The captured input associated with a group is always the subsequence * that the group most recently matched. If a group is evaluated a second time * because of quantification then its previously-captured value, if any, will * be retained if the second evaluation fails. Matching the string * "aba" against the expression (a(b)?)+, for example, leaves * group two set to "b". All captured input is discarded at the * beginning of each match. * *

Groups beginning with (? are pure, non-capturing groups * that do not capture text and do not count towards the group total. * * *

Unicode support

* *

This class is in conformance with Level 1 of Unicode Technical * Standard #18: Unicode Regular Expression Guidelines, plus RL2.1 * Canonical Equivalents. * *

Unicode escape sequences such as \u2014 in Java source code * are processed as described in \u00A73.3 * of the Java Language Specification. Such escape sequences are also * implemented directly by the regular-expression parser so that Unicode * escapes can be used in expressions that are read from files or from the * keyboard. Thus the strings "\u2014" and "\\u2014", * while not equal, compile into the same pattern, which matches the character * with hexadecimal value 0x2014. * *

Unicode blocks and categories are written with the * \p and \P constructs as in * Perl. \p{prop} matches if the input has the * property prop, while \P{prop} does not match if * the input has that property. Blocks are specified with the prefix * In, as in InMongolian. Categories may be specified with * the optional prefix Is: Both \p{L} and \p{IsL} * denote the category of Unicode letters. Blocks and categories can be used * both inside and outside of a character class. * *

The supported categories are those of * * The Unicode Standard in the version specified by the * {@link java.lang.Character Character} class. The category names are those * defined in the Standard, both normative and informative. * The block names supported by Pattern are the valid block names * accepted and defined by * {@link java.lang.Character.UnicodeBlock#forName(String) UnicodeBlock.forName}. * *

Categories that behave like the java.lang.Character * boolean ismethodname methods (except for the deprecated ones) are * available through the same \p{prop} syntax where * the specified property has the name javamethodname. * *

Comparison to Perl 5

* *

The Pattern engine performs traditional NFA-based matching * with ordered alternation as occurs in Perl 5. * *

Perl constructs not supported by this class:

* * * *

Constructs supported by this class but not by Perl:

* *
* *

Notable differences from Perl:

* * * * *

For a more precise description of the behavior of regular expression * constructs, please see * Mastering Regular Expressions, 2nd Edition, Jeffrey E. F. Friedl, * O'Reilly and Associates, 2002. *

* * @see java.lang.String#split(String, int) * @see java.lang.String#split(String) * * @author Mike McCloskey * @author Mark Reinhold * @author JSR-51 Expert Group * @version 1.111, 05/01/04 * @since 1.4 * @spec JSR-51 */ public final class Pattern implements java.io.Serializable { /** * Regular expression modifier values. Instead of being passed as * arguments, they can also be passed as inline modifiers. * For example, the following statements have the same effect. *
     * RegExp r1 = RegExp.compile("abc", Pattern.I|Pattern.M);
     * RegExp r2 = RegExp.compile("(?im)abc", 0);
     * 
* * The flags are duplicated so that the familiar Perl match flag * names are available. */ /** * Enables Unix lines mode. * *

In this mode, only the '\n' line terminator is recognized * in the behavior of ., ^, and $. * *

Unix lines mode can also be enabled via the embedded flag * expression (?d). */ public static final int UNIX_LINES = 0x01; /** * Enables case-insensitive matching. * *

By default, case-insensitive matching assumes that only characters * in the US-ASCII charset are being matched. Unicode-aware * case-insensitive matching can be enabled by specifying the {@link * #UNICODE_CASE} flag in conjunction with this flag. * *

Case-insensitive matching can also be enabled via the embedded flag * expression (?i). * *

Specifying this flag may impose a slight performance penalty.

*/ public static final int CASE_INSENSITIVE = 0x02; /** * Permits whitespace and comments in pattern. * *

In this mode, whitespace is ignored, and embedded comments starting * with # are ignored until the end of a line. * *

Comments mode can also be enabled via the embedded flag * expression (?x). */ public static final int COMMENTS = 0x04; /** * Enables multiline mode. * *

In multiline mode the expressions ^ and $ match * just after or just before, respectively, a line terminator or the end of * the input sequence. By default these expressions only match at the * beginning and the end of the entire input sequence. * *

Multiline mode can also be enabled via the embedded flag * expression (?m).

*/ public static final int MULTILINE = 0x08; /** * Enables literal parsing of the pattern. * *

When this flag is specified then the input string that specifies * the pattern is treated as a sequence of literal characters. * Metacharacters or escape sequences in the input sequence will be * given no special meaning. * *

The flags CASE_INSENSITIVE and UNICODE_CASE retain their impact on * matching when used in conjunction with this flag. The other flags * become superfluous. * *

There is no embedded flag character for enabling literal parsing. */ public static final int LITERAL = 0x10; /** * Enables dotall mode. * *

In dotall mode, the expression . matches any character, * including a line terminator. By default this expression does not match * line terminators. * *

Dotall mode can also be enabled via the embedded flag * expression (?s). (The s is a mnemonic for * "single-line" mode, which is what this is called in Perl.)

*/ public static final int DOTALL = 0x20; /** * Enables Unicode-aware case folding. * *

When this flag is specified then case-insensitive matching, when * enabled by the {@link #CASE_INSENSITIVE} flag, is done in a manner * consistent with the Unicode Standard. By default, case-insensitive * matching assumes that only characters in the US-ASCII charset are being * matched. * *

Unicode-aware case folding can also be enabled via the embedded flag * expression (?u). * *

Specifying this flag may impose a performance penalty.

*/ public static final int UNICODE_CASE = 0x40; /** * Enables canonical equivalence. * *

When this flag is specified then two characters will be considered * to match if, and only if, their full canonical decompositions match. * The expression "a\u030A", for example, will match the * string "\u00E5" when this flag is specified. By default, * matching does not take canonical equivalence into account. * *

There is no embedded flag character for enabling canonical * equivalence. * *

Specifying this flag may impose a performance penalty.

*/ public static final int CANON_EQ = 0x80; /* Pattern has only two serialized components: The pattern string * and the flags, which are all that is needed to recompile the pattern * when it is deserialized. */ /** use serialVersionUID from Merlin b59 for interoperability */ private static final long serialVersionUID = 5073258162644648461L; /** * The original regular-expression pattern string. * * @serial */ private String pattern; /** * The original pattern flags. * * @serial */ private int flags; /** * Boolean indicating this Pattern is compiled; this is necessary in order * to lazily compile deserialized Patterns. */ private transient volatile boolean compiled = false; /** * The normalized pattern string. */ private transient String normalizedPattern; /** * The starting point of state machine for the find operation. This allows * a match to start anywhere in the input. */ transient Node root; /** * The root of object tree for a match operation. The pattern is matched * at the beginning. This may include a find that uses BnM or a First * node. */ transient Node matchRoot; /** * Temporary storage used by parsing pattern slice. */ transient int[] buffer; /** * Temporary storage used while parsing group references. */ transient GroupHead[] groupNodes; /** * Temporary null terminating char array used by pattern compiling. */ private transient int[] temp; /** * The number of capturing groups in this Pattern. Used by matchers to * allocate storage needed to perform a match. */ transient int capturingGroupCount; /** * The local variable count used by parsing tree. Used by matchers to * allocate storage needed to perform a match. */ transient int localCount; /** * Index into the pattern string that keeps track of how much has been * parsed. */ private transient int cursor; /** * Holds the length of the pattern string. */ private transient int patternLength; /** * Compiles the given regular expression into a pattern.

* * @param regex * The expression to be compiled * * @throws PatternSyntaxException * If the expression's syntax is invalid */ public static Pattern compile(String regex) { return new Pattern(regex, 0); } /** * Compiles the given regular expression into a pattern with the given * flags.

* * @param regex * The expression to be compiled * * @param flags * Match flags, a bit mask that may include * {@link #CASE_INSENSITIVE}, {@link #MULTILINE}, {@link #DOTALL}, * {@link #UNICODE_CASE}, and {@link #CANON_EQ} * * @throws IllegalArgumentException * If bit values other than those corresponding to the defined * match flags are set in flags * * @throws PatternSyntaxException * If the expression's syntax is invalid */ public static Pattern compile(String regex, int flags) { return new Pattern(regex, flags); } /** * Returns the regular expression from which this pattern was compiled. *

* * @return The source of this pattern */ public String pattern() { return pattern; } /** *

Returns the string representation of this pattern. This * is the regular expression from which this pattern was * compiled.

* * @return The string representation of this pattern * @since 1.5 */ public String toString() { return pattern; } /** * Creates a matcher that will match the given input against this pattern. *

* * @param input * The character sequence to be matched * * @return A new matcher for this pattern */ public Matcher matcher(CharSequence input) { synchronized(this) { if (!compiled) compile(); } Matcher m = new Matcher(this, input); return m; } /** * Returns this pattern's match flags.

* * @return The match flags specified when this pattern was compiled */ public int flags() { return flags; } /** * Compiles the given regular expression and attempts to match the given * input against it. * *

An invocation of this convenience method of the form * *

     * Pattern.matches(regex, input);
* * behaves in exactly the same way as the expression * *
     * Pattern.compile(regex).matcher(input).matches()
* *

If a pattern is to be used multiple times, compiling it once and reusing * it will be more efficient than invoking this method each time.

* * @param regex * The expression to be compiled * * @param input * The character sequence to be matched * * @throws PatternSyntaxException * If the expression's syntax is invalid */ public static boolean matches(String regex, CharSequence input) { Pattern p = Pattern.compile(regex); Matcher m = p.matcher(input); return m.matches(); } /** * Splits the given input sequence around matches of this pattern. * *

The array returned by this method contains each substring of the * input sequence that is terminated by another subsequence that matches * this pattern or is terminated by the end of the input sequence. The * substrings in the array are in the order in which they occur in the * input. If this pattern does not match any subsequence of the input then * the resulting array has just one element, namely the input sequence in * string form. * *

The limit parameter controls the number of times the * pattern is applied and therefore affects the length of the resulting * array. If the limit n is greater than zero then the pattern * will be applied at most n - 1 times, the array's * length will be no greater than n, and the array's last entry * will contain all input beyond the last matched delimiter. If n * is non-positive then the pattern will be applied as many times as * possible and the array can have any length. If n is zero then * the pattern will be applied as many times as possible, the array can * have any length, and trailing empty strings will be discarded. * *

The input "boo:and:foo", for example, yields the following * results with these parameters: * *

* * * * * * * * * * * * * * * * * * * * * *

Regex    

Limit    

Result    

:2{ "boo", "and:foo" }
:5{ "boo", "and", "foo" }
:-2{ "boo", "and", "foo" }
o5{ "b", "", ":and:f", "", "" }
o-2{ "b", "", ":and:f", "", "" }
o0{ "b", "", ":and:f" }
* * * @param input * The character sequence to be split * * @param limit * The result threshold, as described above * * @return The array of strings computed by splitting the input * around matches of this pattern */ public String[] split(CharSequence input, int limit) { int index = 0; boolean matchLimited = limit > 0; ArrayList matchList = new ArrayList(); Matcher m = matcher(input); // Add segments before each match found while(m.find()) { if (!matchLimited || matchList.size() < limit - 1) { String match = input.subSequence(index, m.start()).toString(); matchList.add(match); index = m.end(); } else if (matchList.size() == limit - 1) { // last one String match = input.subSequence(index, input.length()).toString(); matchList.add(match); index = m.end(); } } // If no match was found, return this if (index == 0) return new String[] {input.toString()}; // Add remaining segment if (!matchLimited || matchList.size() < limit) matchList.add(input.subSequence(index, input.length()).toString()); // Construct result int resultSize = matchList.size(); if (limit == 0) while (resultSize > 0 && matchList.get(resultSize-1).equals("")) resultSize--; String[] result = new String[resultSize]; return (String[])matchList.subList(0, resultSize).toArray(result); } /** * Splits the given input sequence around matches of this pattern. * *

This method works as if by invoking the two-argument {@link * #split(java.lang.CharSequence, int) split} method with the given input * sequence and a limit argument of zero. Trailing empty strings are * therefore not included in the resulting array.

* *

The input "boo:and:foo", for example, yields the following * results with these expressions: * *

* * * * * * *

Regex    

Result

:{ "boo", "and", "foo" }
o{ "b", "", ":and:f" }
* * * @param input * The character sequence to be split * * @return The array of strings computed by splitting the input * around matches of this pattern */ public String[] split(CharSequence input) { return split(input, 0); } /** * Returns a literal pattern String for the specified * String. * *

This method produces a String that can be used to * create a Pattern that would match the string * s as if it were a literal pattern.

Metacharacters * or escape sequences in the input sequence will be given no special * meaning. * * @param s The string to be literalized * @return A literal string replacement * @since 1.5 */ public static String quote(String s) { int slashEIndex = s.indexOf("\\E"); if (slashEIndex == -1) return "\\Q" + s + "\\E"; StringBuilder sb = new StringBuilder(s.length() * 2); sb.append("\\Q"); slashEIndex = 0; int current = 0; while ((slashEIndex = s.indexOf("\\E", current)) != -1) { sb.append(s.substring(current, slashEIndex)); current = slashEIndex + 2; sb.append("\\E\\\\E\\Q"); } sb.append(s.substring(current, s.length())); sb.append("\\E"); return sb.toString(); } /** * Recompile the Pattern instance from a stream. The original pattern * string is read in and the object tree is recompiled from it. */ private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { // Read in all fields s.defaultReadObject(); // Initialize counts capturingGroupCount = 1; localCount = 0; // if length > 0, the Pattern is lazily compiled compiled = false; if (pattern.length() == 0) { root = new Start(lastAccept); matchRoot = lastAccept; compiled = true; } } /** * This private constructor is used to create all Patterns. The pattern * string and match flags are all that is needed to completely describe * a Pattern. An empty pattern string results in an object tree with * only a Start node and a LastNode node. */ private Pattern(String p, int f) { pattern = p; flags = f; // Reset group index count capturingGroupCount = 1; localCount = 0; if (pattern.length() > 0) { compile(); } else { root = new Start(lastAccept); matchRoot = lastAccept; } } /** * The pattern is converted to normalizedD form and then a pure group * is constructed to match canonical equivalences of the characters. */ private void normalize() { boolean inCharClass = false; int lastCodePoint = -1; // Convert pattern into normalizedD form normalizedPattern = Normalizer.decompose(pattern, false, 0); patternLength = normalizedPattern.length(); // Modify pattern to match canonical equivalences StringBuilder newPattern = new StringBuilder(patternLength); for(int i=0; i= patternLength) break; c = normalizedPattern.codePointAt(i); sequenceBuffer.appendCodePoint(c); } String ea = produceEquivalentAlternation( sequenceBuffer.toString()); newPattern.setLength(newPattern.length()-Character.charCount(lastCodePoint)); newPattern.append("(?:").append(ea).append(")"); } else if (c == '[' && lastCodePoint != '\\') { i = normalizeCharClass(newPattern, i); } else { newPattern.appendCodePoint(c); } lastCodePoint = c; i += Character.charCount(c); } normalizedPattern = newPattern.toString(); } /** * Complete the character class being parsed and add a set * of alternations to it that will match the canonical equivalences * of the characters within the class. */ private int normalizeCharClass(StringBuilder newPattern, int i) { StringBuilder charClass = new StringBuilder(); StringBuilder eq = null; int lastCodePoint = -1; String result; i++; charClass.append("["); while(true) { int c = normalizedPattern.codePointAt(i); StringBuilder sequenceBuffer; if (c == ']' && lastCodePoint != '\\') { charClass.append((char)c); break; } else if (Character.getType(c) == Character.NON_SPACING_MARK) { sequenceBuffer = new StringBuilder(); sequenceBuffer.appendCodePoint(lastCodePoint); while(Character.getType(c) == Character.NON_SPACING_MARK) { sequenceBuffer.appendCodePoint(c); i += Character.charCount(c); if (i >= normalizedPattern.length()) break; c = normalizedPattern.codePointAt(i); } String ea = produceEquivalentAlternation( sequenceBuffer.toString()); charClass.setLength(charClass.length()-Character.charCount(lastCodePoint)); if (eq == null) eq = new StringBuilder(); eq.append('|'); eq.append(ea); } else { charClass.appendCodePoint(c); i++; } if (i == normalizedPattern.length()) error("Unclosed character class"); lastCodePoint = c; } if (eq != null) { result = new String("(?:"+charClass.toString()+ eq.toString()+")"); } else { result = charClass.toString(); } newPattern.append(result); return i; } /** * Given a specific sequence composed of a regular character and * combining marks that follow it, produce the alternation that will * match all canonical equivalences of that sequence. */ private String produceEquivalentAlternation(String source) { int len = countChars(source, 0, 1); if (source.length() == len) // source has one character. return new String(source); String base = source.substring(0,len); String combiningMarks = source.substring(len); String[] perms = producePermutations(combiningMarks); StringBuilder result = new StringBuilder(source); // Add combined permutations for(int x=0; x0) result.append("|"+next); next = composeOneStep(next); if (next != null) result.append("|"+produceEquivalentAlternation(next)); } return result.toString(); } /** * Returns an array of strings that have all the possible * permutations of the characters in the input string. * This is used to get a list of all possible orderings * of a set of combining marks. Note that some of the permutations * are invalid because of combining class collisions, and these * possibilities must be removed because they are not canonically * equivalent. */ private String[] producePermutations(String input) { if (input.length() == countChars(input, 0, 1)) return new String[] {input}; if (input.length() == countChars(input, 0, 2)) { int c0 = Character.codePointAt(input, 0); int c1 = Character.codePointAt(input, Character.charCount(c0)); if (getClass(c1) == getClass(c0)) { return new String[] {input}; } String[] result = new String[2]; result[0] = input; StringBuilder sb = new StringBuilder(2); sb.appendCodePoint(c1); sb.appendCodePoint(c0); result[1] = sb.toString(); return result; } int length = 1; int nCodePoints = countCodePoints(input); for(int x=1; x=0; y--) { if (combClass[y] == combClass[x]) { continue loop; } } StringBuilder sb = new StringBuilder(input); String otherChars = sb.delete(offset, offset+len).toString(); String[] subResult = producePermutations(otherChars); String prefix = input.substring(offset, offset+len); for(int y=0; ynext:"); if (node == Pattern.accept) { System.out.println("Accept Node"); node = null; } } } /** * Used to accumulate information about a subtree of the object graph * so that optimizations can be applied to the subtree. */ static final class TreeInfo { int minLength; int maxLength; boolean maxValid; boolean deterministic; TreeInfo() { reset(); } void reset() { minLength = 0; maxLength = 0; maxValid = true; deterministic = true; } } /** * The following private methods are mainly used to improve the * readability of the code. In order to let the Java compiler easily * inline them, we should not put many assertions or error checks in them. */ /** * Indicates whether a particular flag is set or not. */ private boolean has(int f) { return (flags & f) > 0; } /** * Match next character, signal error if failed. */ private void accept(int ch, String s) { int testChar = temp[cursor++]; if (has(COMMENTS)) testChar = parsePastWhitespace(testChar); if (ch != testChar) { error(s); } } /** * Mark the end of pattern with a specific character. */ private void mark(int c) { temp[patternLength] = c; } /** * Peek the next character, and do not advance the cursor. */ private int peek() { int ch = temp[cursor]; if (has(COMMENTS)) ch = peekPastWhitespace(ch); return ch; } /** * Read the next character, and advance the cursor by one. */ private int read() { int ch = temp[cursor++]; if (has(COMMENTS)) ch = parsePastWhitespace(ch); return ch; } /** * Read the next character, and advance the cursor by one, * ignoring the COMMENTS setting */ private int readEscaped() { int ch = temp[cursor++]; return ch; } /** * Advance the cursor by one, and peek the next character. */ private int next() { int ch = temp[++cursor]; if (has(COMMENTS)) ch = peekPastWhitespace(ch); return ch; } /** * Advance the cursor by one, and peek the next character, * ignoring the COMMENTS setting */ private int nextEscaped() { int ch = temp[++cursor]; return ch; } /** * If in xmode peek past whitespace and comments. */ private int peekPastWhitespace(int ch) { while (ASCII.isSpace(ch) || ch == '#') { while (ASCII.isSpace(ch)) ch = temp[++cursor]; if (ch == '#') { ch = peekPastLine(); } } return ch; } /** * If in xmode parse past whitespace and comments. */ private int parsePastWhitespace(int ch) { while (ASCII.isSpace(ch) || ch == '#') { while (ASCII.isSpace(ch)) ch = temp[cursor++]; if (ch == '#') ch = parsePastLine(); } return ch; } /** * xmode parse past comment to end of line. */ private int parsePastLine() { int ch = temp[cursor++]; while (ch != 0 && !isLineSeparator(ch)) ch = temp[cursor++]; return ch; } /** * xmode peek past comment to end of line. */ private int peekPastLine() { int ch = temp[++cursor]; while (ch != 0 && !isLineSeparator(ch)) ch = temp[++cursor]; return ch; } /** * Determines if character is a line separator in the current mode */ private boolean isLineSeparator(int ch) { if (has(UNIX_LINES)) { return ch == '\n'; } else { return (ch == '\n' || ch == '\r' || (ch|1) == '\u2029' || ch == '\u0085'); } } /** * Read the character after the next one, and advance the cursor by two. */ private int skip() { int i = cursor; int ch = temp[i+1]; cursor = i + 2; return ch; } /** * Unread one next character, and retreat cursor by one. */ private void unread() { cursor--; } /** * Internal method used for handling all syntax errors. The pattern is * displayed with a pointer to aid in locating the syntax error. */ private Node error(String s) { throw new PatternSyntaxException(s, normalizedPattern, cursor - 1); } /** * Determines if there is any supplementary character or unpaired * surrogate in the specified range. */ private boolean findSupplementary(int start, int end) { for (int i = start; i < end; i++) { if (isSupplementary(temp[i])) return true; } return false; } /** * Determines if the specified code point is a supplementary * character or unpaired surrogate. */ private static final boolean isSupplementary(int ch) { return ch >= Character.MIN_SUPPLEMENTARY_CODE_POINT || isSurrogate(ch); } /** * The following methods handle the main parsing. They are sorted * according to their precedence order, the lowest one first. */ /** * The expression is parsed with branch nodes added for alternations. * This may be called recursively to parse sub expressions that may * contain alternations. */ private Node expr(Node end) { Node prev = null; for (;;) { Node node = sequence(end); if (prev == null) { prev = node; } else { prev = new Branch(prev, node); } if (peek() != '|') { return prev; } next(); } } /** * Parsing of sequences between alternations. */ private Node sequence(Node end) { Node head = null; Node tail = null; Node node = null; int i, j, ch; LOOP: for (;;) { ch = peek(); switch (ch) { case '(': // Because group handles its own closure, // we need to treat it differently node = group0(); // Check for comment or flag group if (node == null) continue; if (head == null) head = node; else tail.next = node; // Double return: Tail was returned in root tail = root; continue; case '[': node = clazz(true); break; case '\\': ch = nextEscaped(); if (ch == 'p' || ch == 'P') { boolean comp = (ch == 'P'); boolean oneLetter = true; ch = next(); // Consume { if present if (ch != '{') { unread(); } else { oneLetter = false; } node = family(comp, oneLetter); } else { unread(); node = atom(); } break; case '^': next(); if (has(MULTILINE)) { if (has(UNIX_LINES)) node = new UnixCaret(); else node = new Caret(); } else { node = new Begin(); } break; case '$': next(); if (has(UNIX_LINES)) node = new UnixDollar(has(MULTILINE)); else node = new Dollar(has(MULTILINE)); break; case '.': next(); if (has(DOTALL)) { node = new All(); } else { if (has(UNIX_LINES)) node = new UnixDot(); else { node = new Dot(); } } break; case '|': case ')': break LOOP; case ']': // Now interpreting dangling ] and } as literals case '}': node = atom(); break; case '?': case '*': case '+': next(); return error("Dangling meta character '" + ((char)ch) + "'"); case 0: if (cursor >= patternLength) { break LOOP; } // Fall through default: node = atom(); break; } node = closure(node); if (head == null) { head = tail = node; } else { tail.next = node; tail = node; } } if (head == null) { return end; } tail.next = end; return head; } /** * Parse and add a new Single or Slice. */ private Node atom() { int first = 0; int prev = -1; boolean hasSupplementary = false; int ch = peek(); for (;;) { switch (ch) { case '*': case '+': case '?': case '{': if (first > 1) { cursor = prev; // Unwind one character first--; } break; case '$': case '.': case '^': case '(': case '[': case '|': case ')': break; case '\\': ch = nextEscaped(); if (ch == 'p' || ch == 'P') { // Property if (first > 0) { // Slice is waiting; handle it first unread(); break; } else { // No slice; just return the family node if (ch == 'p' || ch == 'P') { boolean comp = (ch == 'P'); boolean oneLetter = true; ch = next(); // Consume { if present if (ch != '{') unread(); else oneLetter = false; return family(comp, oneLetter); } } break; } unread(); prev = cursor; ch = escape(false, first == 0); if (ch >= 0) { append(ch, first); first++; if (isSupplementary(ch)) { hasSupplementary = true; } ch = peek(); continue; } else if (first == 0) { return root; } // Unwind meta escape sequence cursor = prev; break; case 0: if (cursor >= patternLength) { break; } // Fall through default: prev = cursor; append(ch, first); first++; if (isSupplementary(ch)) { hasSupplementary = true; } ch = next(); continue; } break; } if (first == 1) { return newSingle(buffer[0]); } else { return newSlice(buffer, first, hasSupplementary); } } private void append(int ch, int len) { if (len >= buffer.length) { int[] tmp = new int[len+len]; System.arraycopy(buffer, 0, tmp, 0, len); buffer = tmp; } buffer[len] = ch; } /** * Parses a backref greedily, taking as many numbers as it * can. The first digit is always treated as a backref, but * multi digit numbers are only treated as a backref if at * least that many backrefs exist at this point in the regex. */ private Node ref(int refNum) { boolean done = false; while(!done) { int ch = peek(); switch(ch) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': int newRefNum = (refNum * 10) + (ch - '0'); // Add another number if it doesn't make a group // that doesn't exist if (capturingGroupCount - 1 < newRefNum) { done = true; break; } refNum = newRefNum; read(); break; default: done = true; break; } } if (has(CASE_INSENSITIVE) || has(UNICODE_CASE)) return new CIBackRef(refNum); else return new BackRef(refNum); } /** * Parses an escape sequence to determine the actual value that needs * to be matched. * If -1 is returned and create was true a new object was added to the tree * to handle the escape sequence. * If the returned value is greater than zero, it is the value that * matches the escape sequence. */ private int escape(boolean inclass, boolean create) { int ch = skip(); switch (ch) { case '0': return o(); case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': if (inclass) break; if (capturingGroupCount < (ch - '0')) error("No such group yet exists at this point in the pattern"); if (create) { root = ref((ch - '0')); } return -1; case 'A': if (inclass) break; if (create) root = new Begin(); return -1; case 'B': if (inclass) break; if (create) root = new Bound(Bound.NONE); return -1; case 'C': break; case 'D': if (create) root = new NotCtype(ASCII.DIGIT); return -1; case 'E': case 'F': break; case 'G': if (inclass) break; if (create) root = new LastMatch(); return -1; case 'H': case 'I': case 'J': case 'K': case 'L': case 'M': case 'N': case 'O': case 'P': break; case 'Q': if (create) { // Disable metacharacters. We will return a slice // up to the next \E int i = cursor; int c; while ((c = readEscaped()) != 0) { if (c == '\\') { c = readEscaped(); if (c == 'E' || c == 0) break; else unread(); } } int j = cursor-1; if (c == 'E') j--; else unread(); boolean hasSupplementary = false; for (int x = i; x= patternLength) return error("Unclosed character class"); break; case ']': firstInClass = false; if (prev != null) { if (consume) next(); return prev; } break; default: firstInClass = false; break; } node = range(bits); if (include) { if (prev == null) { prev = node; } else { if (prev != node) prev = new Add(prev, node); } } else { if (prev == null) { prev = node.dup(true); // Complement } else { if (prev != node) prev = new Sub(prev, node); } } ch = peek(); } } /** * Parse a single character or a character range in a character class * and return its representative node. */ private Node range(BitClass bits) { int ch = peek(); if (ch == '\\') { ch = nextEscaped(); if (ch == 'p' || ch == 'P') { // A property boolean comp = (ch == 'P'); boolean oneLetter = true; // Consume { if present ch = next(); if (ch != '{') unread(); else oneLetter = false; return family(comp, oneLetter); } else { // ordinary escape unread(); ch = escape(true, true); if (ch == -1) return root; } } else { ch = single(); } if (ch >= 0) { if (peek() == '-') { int endRange = temp[cursor+1]; if (endRange == '[') { if (ch < 256) return bits.add(ch, flags()); return newSingle(ch); } if (endRange != ']') { next(); int m = single(); if (m < ch) return error("Illegal character range"); if (has(CASE_INSENSITIVE) || has(UNICODE_CASE)) return new CIRange(ch, m); else return new Range(ch, m); } } if (ch < 256) return bits.add(ch, flags()); return newSingle(ch); } return error("Unexpected character '"+((char)ch)+"'"); } private int single() { int ch = peek(); switch (ch) { case '\\': return escape(true, false); default: next(); return ch; } } /** * Parses a Unicode character family and returns its representative node. * Reference to an unknown character family results in a list of supported * families in the error. */ private Node family(boolean not, boolean singleLetter) { next(); String name; if (singleLetter) { int c = temp[cursor]; if (!Character.isSupplementaryCodePoint(c)) { name = String.valueOf((char)c); } else { name = new String(temp, cursor, 1); } name = name.intern(); read(); } else { int i = cursor; mark('}'); while(read() != '}') { } mark('\000'); int j = cursor; if (j > patternLength) return error("Unclosed character family"); if (i + 1 >= j) return error("Empty character family"); name = new String(temp, i, j-i-1).intern(); } if (name.startsWith("In")) { name = name.substring(2, name.length()).intern(); return retrieveFamilyNode(name, not); } if (name.startsWith("Is")) name = name.substring(2, name.length()).intern(); return retrieveCategoryNode(name).dup(not); } private Node retrieveFamilyNode(String name, boolean not) { if (name == null) { return familyError("", "Null character family."); } Node n = null; try { Character.UnicodeBlock block = Character.UnicodeBlock.forName(name); n = new UBlock(block, not); } catch (IllegalArgumentException iae) { return familyError(name, "Unknown character family {"); } return n; } private Node retrieveCategoryNode(String name) { Node n = (Node)categoryNames.cMap.get(name); if (n != null) return n; return familyError(name, "Unknown character category {"); } private Node familyError(String name, String type) { StringBuilder sb = new StringBuilder(); sb.append(type); sb.append(name); sb.append("}"); name = sb.toString(); return error(name); } /** * Parses a group and returns the head node of a set of nodes that process * the group. Sometimes a double return system is used where the tail is * returned in root. */ private Node group0() { boolean capturingGroup = false; Node head = null; Node tail = null; int save = flags; root = null; int ch = next(); if (ch == '?') { ch = skip(); switch (ch) { case ':': // (?:xxx) pure group head = createGroup(true); tail = root; head.next = expr(tail); break; case '=': // (?=xxx) and (?!xxx) lookahead case '!': head = createGroup(true); tail = root; head.next = expr(tail); if (ch == '=') { head = tail = new Pos(head); } else { head = tail = new Neg(head); } break; case '>': // (?>xxx) independent group head = createGroup(true); tail = root; head.next = expr(tail); head = tail = new Ques(head, INDEPENDENT); break; case '<': // (?= 0) { int m = read(); if (((m-'0')|('7'-m)) >= 0) { int o = read(); if ((((o-'0')|('7'-o)) >= 0) && (((n-'0')|('3'-n)) >= 0)) { return (n - '0') * 64 + (m - '0') * 8 + (o - '0'); } unread(); return (n - '0') * 8 + (m - '0'); } unread(); return (n - '0'); } error("Illegal octal escape sequence"); return -1; } /** * Utility method for parsing hexadecimal escape sequences. */ private int x() { int n = read(); if (ASCII.isHexDigit(n)) { int m = read(); if (ASCII.isHexDigit(m)) { return ASCII.toDigit(n) * 16 + ASCII.toDigit(m); } } error("Illegal hexadecimal escape sequence"); return -1; } /** * Utility method for parsing unicode escape sequences. */ private int u() { int n = 0; for (int i = 0; i < 4; i++) { int ch = read(); if (!ASCII.isHexDigit(ch)) { error("Illegal Unicode escape sequence"); } n = n * 16 + ASCII.toDigit(ch); } return n; } // // Utility methods for code point support // /** * Tests a surrogate value. */ private static final boolean isSurrogate(int c) { return c >= Character.MIN_HIGH_SURROGATE && c <= Character.MAX_LOW_SURROGATE; } private static final int countChars(CharSequence seq, int index, int lengthInCodePoints) { // optimization if (lengthInCodePoints == 1 && !Character.isHighSurrogate(seq.charAt(index))) { assert (index >= 0 && index < seq.length()); return 1; } int length = seq.length(); int x = index; if (lengthInCodePoints >= 0) { assert (index >= 0 && index < length); for (int i = 0; x < length && i < lengthInCodePoints; i++) { if (Character.isHighSurrogate(seq.charAt(x++))) { if (x < length && Character.isLowSurrogate(seq.charAt(x))) { x++; } } } return x - index; } assert (index >= 0 && index <= length); if (index == 0) { return 0; } int len = -lengthInCodePoints; for (int i = 0; x > 0 && i < len; i++) { if (Character.isLowSurrogate(seq.charAt(--x))) { if (x > 0 && Character.isHighSurrogate(seq.charAt(x-1))) { x--; } } } return index - x; } private static final int countCodePoints(CharSequence seq) { int length = seq.length(); int n = 0; for (int i = 0; i < length; ) { n++; if (Character.isHighSurrogate(seq.charAt(i++))) { if (i < length && Character.isLowSurrogate(seq.charAt(i))) { i++; } } } return n; } /** * Creates a bit vector for matching Latin-1 values. A normal BitClass * never matches values above Latin-1, and a complemented BitClass always * matches values above Latin-1. */ static final class BitClass extends Node { boolean[] bits = new boolean[256]; boolean complementMe = false; BitClass(boolean not) { complementMe = not; } BitClass(boolean[] newBits, boolean not) { complementMe = not; bits = newBits; } Node add(int c, int f) { if ((f & CASE_INSENSITIVE) == 0) { bits[c] = true; } else if (ASCII.isAscii(c)) { bits[ASCII.toUpper(c)] = true; bits[ASCII.toLower(c)] = true; } else { bits[Character.toLowerCase((char)c)] = true; bits[Character.toUpperCase((char)c)] = true; } return this; } Node dup(boolean not) { return new BitClass(bits, not); } boolean match(Matcher matcher, int i, CharSequence seq) { if (i >= matcher.to) { matcher.hitEnd = true; return false; } int c = Character.codePointAt(seq, i); boolean charMatches = (c > 255) ? complementMe : (bits[c] ^ complementMe); return charMatches && next.match(matcher, i+Character.charCount(c), seq); } boolean study(TreeInfo info) { info.minLength++; info.maxLength++; return next.study(info); } } /** * Utility method for creating a single character matcher. */ private Node newSingle(int ch) { int f = flags; if ((f & (CASE_INSENSITIVE|UNICODE_CASE)) == 0) { return new Single(ch); } if ((f & UNICODE_CASE) == 0) { return new SingleA(ch); } return new SingleU(ch); } /** * Utility method for creating a string slice matcher. */ private Node newSlice(int[] buf, int count, boolean hasSupplementary) { int[] tmp = new int[count]; int i = flags; if ((i & (CASE_INSENSITIVE|UNICODE_CASE)) == 0) { for (i = 0; i < count; i++) { tmp[i] = buf[i]; } return hasSupplementary ? new SliceS(tmp) : new Slice(tmp); } else if ((i & UNICODE_CASE) == 0) { for (i = 0; i < count; i++) { tmp[i] = (char)ASCII.toLower(buf[i]); } return new SliceA(tmp); } else { for (i = 0; i < count; i++) { int c = buf[i]; c = Character.toUpperCase(c); c = Character.toLowerCase(c); tmp[i] = c; } return new SliceU(tmp); } } /** * The following classes are the building components of the object * tree that represents a compiled regular expression. The object tree * is made of individual elements that handle constructs in the Pattern. * Each type of object knows how to match its equivalent construct with * the match() method. */ /** * Base class for all node classes. Subclasses should override the match() * method as appropriate. This class is an accepting node, so its match() * always returns true. */ static class Node extends Object { Node next; Node() { next = Pattern.accept; } Node dup(boolean not) { if (not) { return new Not(this); } else { throw new RuntimeException("internal error in Node dup()"); } } /** * This method implements the classic accept node. */ boolean match(Matcher matcher, int i, CharSequence seq) { matcher.last = i; matcher.groups[0] = matcher.first; matcher.groups[1] = matcher.last; return true; } /** * This method is good for all zero length assertions. */ boolean study(TreeInfo info) { if (next != null) { return next.study(info); } else { return info.deterministic; } } } static class LastNode extends Node { /** * This method implements the classic accept node with * the addition of a check to see if the match occurred * using all of the input. */ boolean match(Matcher matcher, int i, CharSequence seq) { if (matcher.acceptMode == Matcher.ENDANCHOR && i != matcher.to) return false; matcher.last = i; matcher.groups[0] = matcher.first; matcher.groups[1] = matcher.last; return true; } } /** * Dummy node to assist in connecting branches. */ static class Dummy extends Node { boolean match(Matcher matcher, int i, CharSequence seq) { return next.match(matcher, i, seq); } } /** * Used for REs that can start anywhere within the input string. * This basically tries to match repeatedly at each spot in the * input string, moving forward after each try. An anchored search * or a BnM will bypass this node completely. */ static class Start extends Node { int minLength; Start(Node node) { this.next = node; TreeInfo info = new TreeInfo(); next.study(info); minLength = info.minLength; } boolean match(Matcher matcher, int i, CharSequence seq) { if (i > matcher.to - minLength) { matcher.hitEnd = true; return false; } boolean ret = false; int guard = matcher.to - minLength; for (; i <= guard; i++) { if (ret = next.match(matcher, i, seq)) break; if (i == guard) matcher.hitEnd = true; } if (ret) { matcher.first = i; matcher.groups[0] = matcher.first; matcher.groups[1] = matcher.last; } return ret; } boolean study(TreeInfo info) { next.study(info); info.maxValid = false; info.deterministic = false; return false; } } /* * StartS supports supplementary characters, including unpaired surrogates. */ static final class StartS extends Start { StartS(Node node) { super(node); } boolean match(Matcher matcher, int i, CharSequence seq) { if (i > matcher.to - minLength) { matcher.hitEnd = true; return false; } boolean ret = false; int guard = matcher.to - minLength; while (i <= guard) { if ((ret = next.match(matcher, i, seq)) || i == guard) break; // Optimization to move to the next character. This is // faster than countChars(seq, i, 1). if (Character.isHighSurrogate(seq.charAt(i++))) { if (i < seq.length() && Character.isLowSurrogate(seq.charAt(i))) { i++; } } if (i == guard) matcher.hitEnd = true; } if (ret) { matcher.first = i; matcher.groups[0] = matcher.first; matcher.groups[1] = matcher.last; } return ret; } } /** * Node to anchor at the beginning of input. This object implements the * match for a \A sequence, and the caret anchor will use this if not in * multiline mode. */ static final class Begin extends Node { boolean match(Matcher matcher, int i, CharSequence seq) { int fromIndex = (matcher.anchoringBounds) ? matcher.from : 0; if (i == fromIndex && next.match(matcher, i, seq)) { matcher.first = i; matcher.groups[0] = i; matcher.groups[1] = matcher.last; return true; } else { return false; } } } /** * Node to anchor at the end of input. This is the absolute end, so this * should not match at the last newline before the end as $ will. */ static final class End extends Node { boolean match(Matcher matcher, int i, CharSequence seq) { int endIndex = (matcher.anchoringBounds) ? matcher.to : matcher.getTextLength(); if (i == endIndex) { matcher.hitEnd = true; return next.match(matcher, i, seq); } return false; } } /** * Node to anchor at the beginning of a line. This is essentially the * object to match for the multiline ^. */ static final class Caret extends Node { boolean match(Matcher matcher, int i, CharSequence seq) { int startIndex = matcher.from; int endIndex = matcher.to; if (!matcher.anchoringBounds) { startIndex = 0; endIndex = matcher.getTextLength(); } // Perl does not match ^ at end of input even after newline if (i == endIndex) { matcher.hitEnd = true; return false; } if (i > startIndex) { char ch = seq.charAt(i-1); if (ch != '\n' && ch != '\r' && (ch|1) != '\u2029' && ch != '\u0085' ) { return false; } // Should treat /r/n as one newline if (ch == '\r' && seq.charAt(i) == '\n') return false; } return next.match(matcher, i, seq); } } /** * Node to anchor at the beginning of a line when in unixdot mode. */ static final class UnixCaret extends Node { boolean match(Matcher matcher, int i, CharSequence seq) { int startIndex = matcher.from; int endIndex = matcher.to; if (!matcher.anchoringBounds) { startIndex = 0; endIndex = matcher.getTextLength(); } // Perl does not match ^ at end of input even after newline if (i == endIndex) { matcher.hitEnd = true; return false; } if (i > startIndex) { char ch = seq.charAt(i-1); if (ch != '\n') { return false; } } return next.match(matcher, i, seq); } } /** * Node to match the location where the last match ended. * This is used for the \G construct. */ static final class LastMatch extends Node { boolean match(Matcher matcher, int i, CharSequence seq) { if (i != matcher.oldLast) return false; return next.match(matcher, i, seq); } } /** * Node to anchor at the end of a line or the end of input based on the * multiline mode. * * When not in multiline mode, the $ can only match at the very end * of the input, unless the input ends in a line terminator in which * it matches right before the last line terminator. * * Note that \r\n is considered an atomic line terminator. * * Like ^ the $ operator matches at a position, it does not match the * line terminators themselves. */ static final class Dollar extends Node { boolean multiline; Dollar(boolean mul) { multiline = mul; } boolean match(Matcher matcher, int i, CharSequence seq) { int endIndex = (matcher.anchoringBounds) ? matcher.to : matcher.getTextLength(); if (!multiline) { if (i < endIndex - 2) return false; if (i == endIndex - 2) { char ch = seq.charAt(i); if (ch != '\r') return false; ch = seq.charAt(i + 1); if (ch != '\n') return false; } } // Matches before any line terminator; also matches at the // end of input // Before line terminator: // If multiline, we match here no matter what // If not multiline, fall through so that the end // is marked as hit; this must be a /r/n or a /n // at the very end so the end was hit; more input // could make this not match here if (i < endIndex) { char ch = seq.charAt(i); if (ch == '\n') { // No match between \r\n if (i > 0 && seq.charAt(i-1) == '\r') return false; if (multiline) return next.match(matcher, i, seq); } else if (ch == '\r' || ch == '\u0085' || (ch|1) == '\u2029') { if (multiline) return next.match(matcher, i, seq); } else { // No line terminator, no match return false; } } // Matched at current end so hit end matcher.hitEnd = true; // If a $ matches because of end of input, then more input // could cause it to fail! matcher.requireEnd = true; return next.match(matcher, i, seq); } boolean study(TreeInfo info) { next.study(info); return info.deterministic; } } /** * Node to anchor at the end of a line or the end of input based on the * multiline mode when in unix lines mode. */ static final class UnixDollar extends Node { boolean multiline; UnixDollar(boolean mul) { multiline = mul; } boolean match(Matcher matcher, int i, CharSequence seq) { int endIndex = (matcher.anchoringBounds) ? matcher.to : matcher.getTextLength(); if (i < endIndex) { char ch = seq.charAt(i); if (ch == '\n') { // If not multiline, then only possible to // match at very end or one before end if (multiline == false && i != endIndex - 1) return false; // If multiline return next.match without setting // matcher.hitEnd if (multiline) return next.match(matcher, i, seq); } else { return false; } } // Matching because at the end or 1 before the end; // more input could change this so set hitEnd matcher.hitEnd = true; // If a $ matches because of end of input, then more input // could cause it to fail! matcher.requireEnd = true; return next.match(matcher, i, seq); } boolean study(TreeInfo info) { next.study(info); return info.deterministic; } } /** * Node class for a single character value. */ static final class Single extends Node { int ch; int len; Single(int n) { ch = n; len = Character.charCount(ch); } Node dup(boolean not) { if (not) return new NotSingle(ch); else return new Single(ch); } boolean match(Matcher matcher, int i, CharSequence seq) { if (i >= matcher.to) { matcher.hitEnd = true; return false; } int c = Character.codePointAt(seq, i); return (c == ch && next.match(matcher, i+len, seq)); } boolean study(TreeInfo info) { info.minLength++; info.maxLength++; return next.study(info); } } /** * Node class to match any character except a single char value. */ static final class NotSingle extends Node { int ch; NotSingle(int n) { ch = n; } Node dup(boolean not) { if (not) return new Single(ch); else return new NotSingle(ch); } boolean match(Matcher matcher, int i, CharSequence seq) { if (i >= matcher.to) { matcher.hitEnd = true; return false; } int c = Character.codePointAt(seq, i); return (c != ch && next.match(matcher, i+Character.charCount(c), seq)); } boolean study(TreeInfo info) { info.minLength++; info.maxLength++; return next.study(info); } } /** * Case independent ASCII value. */ static final class SingleA extends Node { int ch; SingleA(int n) { ch = ASCII.toLower(n); } Node dup(boolean not) { if (not) return new NotSingleA(ch); else return new SingleA(ch); } boolean match(Matcher matcher, int i, CharSequence seq) { if (i < matcher.to) { int c = seq.charAt(i); if (c == ch || ASCII.toLower(c) == ch) { return next.match(matcher, i+1, seq); } } matcher.hitEnd = true; return false; } boolean study(TreeInfo info) { info.minLength++; info.maxLength++; return next.study(info); } } static final class NotSingleA extends Node { int ch; NotSingleA(int n) { ch = ASCII.toLower(n); } Node dup(boolean not) { if (not) return new SingleA(ch); else return new NotSingleA(ch); } boolean match(Matcher matcher, int i, CharSequence seq) { if (i < matcher.to) { int c = Character.codePointAt(seq, i); if (c != ch && ASCII.toLower(c) != ch) { return next.match(matcher, i+Character.charCount(c), seq); } } matcher.hitEnd = true; return false; } boolean study(TreeInfo info) { info.minLength++; info.maxLength++; return next.study(info); } } /** * Case independent unicode (including supplementary characters) value. */ static final class SingleU extends Node { int ch; int len; SingleU(int c) { ch = Character.toLowerCase(Character.toUpperCase(c)); len = Character.charCount(ch); } Node dup(boolean not) { if (not) return new NotSingleU(ch); else return new SingleU(ch); } boolean match(Matcher matcher, int i, CharSequence seq) { if (i < matcher.to) { int c = Character.codePointAt(seq, i); if (c == ch) return next.match(matcher, i+len, seq); int cc = Character.toUpperCase(c); cc = Character.toLowerCase(cc); if (cc == ch) return next.match(matcher, i+Character.charCount(c), seq); } matcher.hitEnd = true; return false; } boolean study(TreeInfo info) { info.minLength++; info.maxLength++; return next.study(info); } } /** * Case independent unicode value. */ static final class NotSingleU extends Node { int ch; NotSingleU(int c) { ch = Character.toLowerCase(Character.toUpperCase((char)c)); } Node dup(boolean not) { if (not) return new SingleU(ch); else return new NotSingleU(ch); } boolean match(Matcher matcher, int i, CharSequence seq) { if (i < matcher.to) { int c = Character.codePointAt(seq, i); if (c == ch) return false; int cc = Character.toUpperCase(c); cc = Character.toLowerCase(cc); if (cc != ch) return next.match(matcher, i+Character.charCount(c), seq); } matcher.hitEnd = true; return false; } boolean study(TreeInfo info) { info.minLength++; info.maxLength++; return next.study(info); } } /** * Node class that matches a Unicode category. */ static final class Category extends Node { int atype; Category(int type) { atype = type; } Node dup(boolean not) { return new Category(not ? ~atype : atype); } boolean match(Matcher matcher, int i, CharSequence seq) { if (i >= matcher.to) { matcher.hitEnd = true; return false; } int c = Character.codePointAt(seq, i); return (atype & (1 << Character.getType(c))) != 0 && next.match(matcher, i+Character.charCount(c), seq); } boolean study(TreeInfo info) { info.minLength++; info.maxLength++; return next.study(info); } } /** * Node class that matches a POSIX type. */ static final class Ctype extends Node { int ctype; Ctype(int type) { ctype = type; } Node dup(boolean not) { if (not) { return new NotCtype(ctype); } else { return new Ctype(ctype); } } boolean match(Matcher matcher, int i, CharSequence seq) { if (i >= matcher.to) { matcher.hitEnd = true; return false; } int c = Character.codePointAt(seq, i); return (c < 128 && ASCII.isType(c, ctype) && next.match(matcher, i+1, seq)); } boolean study(TreeInfo info) { info.minLength++; info.maxLength++; return next.study(info); } } static final class NotCtype extends Node { int ctype; NotCtype(int type) { ctype = type; } Node dup(boolean not) { if (not) { return new Ctype(ctype); } else { return new NotCtype(ctype); } } boolean match(Matcher matcher, int i, CharSequence seq) { if (i >= matcher.to) { matcher.hitEnd = true; return false; } int c = Character.codePointAt(seq, i); return ((c >= 128 || !ASCII.isType(c, ctype)) && next.match(matcher, i+Character.charCount(c), seq)); } boolean study(TreeInfo info) { info.minLength++; info.maxLength++; return next.study(info); } } static abstract class JavaTypeClass extends Node { JavaTypeClass() { } Node dup(boolean not) { Node duplicate = null; try { duplicate = (Node)this.getClass().newInstance(); } catch (InstantiationException ie) { throw new Error("Cannot instantiate node"); } catch (IllegalAccessException iae) { throw new Error("Cannot instantiate node"); } if (not) return new Not(duplicate); else return duplicate; } abstract boolean isProperty(int ch); boolean match(Matcher matcher, int i, CharSequence seq) { if (i >= matcher.to) { matcher.hitEnd = true; return false; } int c = Character.codePointAt(seq, i); return (isProperty(c) && next.match(matcher, i+Character.charCount(c), seq)); } boolean study(TreeInfo info) { info.minLength++; info.maxLength++; return next.study(info); } } static final class JavaLowerCase extends JavaTypeClass { JavaLowerCase() { } boolean isProperty(int ch) { return Character.isLowerCase(ch); } } static final class JavaUpperCase extends JavaTypeClass { JavaUpperCase() { } boolean isProperty(int ch) { return Character.isUpperCase(ch); } } static final class JavaTitleCase extends JavaTypeClass { JavaTitleCase() { } boolean isProperty(int ch) { return Character.isTitleCase(ch); } } static final class JavaDigit extends JavaTypeClass { JavaDigit() { } boolean isProperty(int ch) { return Character.isDigit(ch); } } static final class JavaDefined extends JavaTypeClass { JavaDefined() { } boolean isProperty(int ch) { return Character.isDefined(ch); } } static final class JavaLetter extends JavaTypeClass { JavaLetter() { } boolean isProperty(int ch) { return Character.isLetter(ch); } } static final class JavaLetterOrDigit extends JavaTypeClass { JavaLetterOrDigit() { } boolean isProperty(int ch) { return Character.isLetterOrDigit(ch); } } static final class JavaJavaIdentifierStart extends JavaTypeClass { JavaJavaIdentifierStart() { } boolean isProperty(int ch) { return Character.isJavaIdentifierStart(ch); } } static final class JavaJavaIdentifierPart extends JavaTypeClass { JavaJavaIdentifierPart() { } boolean isProperty(int ch) { return Character.isJavaIdentifierPart(ch); } } static final class JavaUnicodeIdentifierStart extends JavaTypeClass { JavaUnicodeIdentifierStart() { } boolean isProperty(int ch) { return Character.isUnicodeIdentifierStart(ch); } } static final class JavaUnicodeIdentifierPart extends JavaTypeClass { JavaUnicodeIdentifierPart() { } boolean isProperty(int ch) { return Character.isUnicodeIdentifierPart(ch); } } static final class JavaIdentifierIgnorable extends JavaTypeClass { JavaIdentifierIgnorable() { } boolean isProperty(int ch) { return Character.isIdentifierIgnorable(ch); } } static final class JavaSpaceChar extends JavaTypeClass { JavaSpaceChar() { } boolean isProperty(int ch) { return Character.isSpaceChar(ch); } } static final class JavaWhitespace extends JavaTypeClass { JavaWhitespace() { } boolean isProperty(int ch) { return Character.isWhitespace(ch); } } static final class JavaISOControl extends JavaTypeClass { JavaISOControl() { } boolean isProperty(int ch) { return Character.isISOControl(ch); } } static final class JavaMirrored extends JavaTypeClass { JavaMirrored() { } boolean isProperty(int ch) { return Character.isMirrored(ch); } } static final class Specials extends Node { Specials() { } Node dup(boolean not) { if (not) return new Not(this); else return new Specials(); } boolean match(Matcher matcher, int i, CharSequence seq) { if (i < matcher.to) { int ch = seq.charAt(i); return (((ch-0xFFF0) | (0xFFFD-ch)) >= 0 || ch == 0xFEFF) && next.match(matcher, i+1, seq); } matcher.hitEnd = true; return false; } boolean study(TreeInfo info) { info.minLength++; info.maxLength++; return next.study(info); } } static final class Not extends Node { Node atom; Not(Node atom) { this.atom = atom; } boolean match(Matcher matcher, int i, CharSequence seq) { return !atom.match(matcher, i, seq) && next.match(matcher, i+countChars(seq, i, 1), seq); } boolean study(TreeInfo info) { info.minLength++; info.maxLength++; return next.study(info); } } /** * Node class for a case sensitive sequence of literal characters. */ static class Slice extends Node { int[] buffer; Slice(int[] buf) { buffer = buf; } boolean match(Matcher matcher, int i, CharSequence seq) { int[] buf = buffer; int len = buf.length; // Unfortunately we must now void this opto // in order to properly report hitEnd... //if (i + len > matcher.to) { // matcher.hitEnd = true; // return false; //} for (int j=0; j= matcher.to) { matcher.hitEnd = true; return false; } if (buf[j] != seq.charAt(i+j)) return false; } return next.match(matcher, i+len, seq); } boolean study(TreeInfo info) { info.minLength += buffer.length; info.maxLength += buffer.length; return next.study(info); } } /** * Node class for a case insensitive sequence of literal characters. */ static final class SliceA extends Node { int[] buffer; SliceA(int[] buf) { buffer = buf; } boolean match(Matcher matcher, int i, CharSequence seq) { int[] buf = buffer; int len = buf.length; for (int j=0; j= matcher.to) { matcher.hitEnd = true; return false; } int c = ASCII.toLower(seq.charAt(i+j)); if (buf[j] != c) return false; } return next.match(matcher, i+len, seq); } boolean study(TreeInfo info) { info.minLength += buffer.length; info.maxLength += buffer.length; return next.study(info); } } /** * Node class for a case insensitive sequence of literal characters. * Uses unicode case folding. */ static final class SliceU extends Node { int[] buffer; SliceU(int[] buf) { buffer = buf; } boolean match(Matcher matcher, int i, CharSequence seq) { int[] buf = buffer; int x = i; for (int j = 0; j < buf.length; j++) { if (x >= matcher.to) { matcher.hitEnd = true; return false; } int c = Character.codePointAt(seq, x); int cc = Character.toUpperCase(c); cc = Character.toLowerCase(cc); if (buf[j] != cc) { return false; } x += Character.charCount(c); if (x > matcher.to) { matcher.hitEnd = true; return false; } } return next.match(matcher, x, seq); } boolean study(TreeInfo info) { info.minLength += buffer.length; info.maxLength += buffer.length; return next.study(info); } } /** * Node class for a case sensitive sequence of literal characters * including supplementary characters. */ static final class SliceS extends Slice { SliceS(int[] buf) { super(buf); } boolean match(Matcher matcher, int i, CharSequence seq) { int[] buf = buffer; int x = i; for (int j = 0; j < buf.length; j++) { if (x >= matcher.to) { matcher.hitEnd = true; return false; } int c = Character.codePointAt(seq, x); if (buf[j] != c) return false; x += Character.charCount(c); if (x > matcher.to) { matcher.hitEnd = true; return false; } } return next.match(matcher, x, seq); } } /** * Node class for matching characters within an explicit value range. */ static class Range extends Node { int lower, upper; Range() { } Range(int n) { lower = n >>> 16; upper = n & 0xFFFF; } Range(int lower, int upper) { this.lower = lower; this.upper = upper; } Node dup(boolean not) { if (not) return new NotRange(lower, upper); else return new Range(lower, upper); } boolean match(Matcher matcher, int i, CharSequence seq) { if (i < matcher.to) { int ch = Character.codePointAt(seq, i); return ((ch-lower)|(upper-ch)) >= 0 && next.match(matcher, i+Character.charCount(ch), seq); } matcher.hitEnd = true; return false; } boolean study(TreeInfo info) { info.minLength++; info.maxLength++; return next.study(info); } } /** * Node class for matching characters within an explicit value range * in a case insensitive manner. */ static final class CIRange extends Range { CIRange(int n) { lower = n >>> 16; upper = n & 0xFFFF; } CIRange(int lower, int upper) { super(lower, upper); } Node dup(boolean not) { if (not) return new CINotRange(lower, upper); else return new CIRange(lower, upper); } boolean match(Matcher matcher, int i, CharSequence seq) { if (i < matcher.to) { int ch = Character.codePointAt(seq, i); boolean m = (((ch-lower)|(upper-ch)) >= 0); if (!m) { int cc = Character.toUpperCase(ch); m = (((cc-lower)|(upper-cc)) >= 0); if (!m) { cc = Character.toLowerCase(cc); m = (((cc-lower)|(upper-cc)) >= 0); } } return (m && next.match(matcher, i+Character.charCount(ch), seq)); } matcher.hitEnd = true; return false; } } static class NotRange extends Node { int lower, upper; NotRange() { } NotRange(int n) { lower = n >>> 16; upper = n & 0xFFFF; } NotRange(int lower, int upper) { this.lower = lower; this.upper = upper; } Node dup(boolean not) { if (not) { return new Range(lower, upper); } else { return new NotRange(lower, upper); } } boolean match(Matcher matcher, int i, CharSequence seq) { if (i < matcher.to) { int ch = Character.codePointAt(seq, i); return ((ch-lower)|(upper-ch)) < 0 && next.match(matcher, i+Character.charCount(ch), seq); } matcher.hitEnd = true; return false; } boolean study(TreeInfo info) { info.minLength++; info.maxLength++; return next.study(info); } } static class CINotRange extends NotRange { int lower, upper; CINotRange(int n) { lower = n >>> 16; upper = n & 0xFFFF; } CINotRange(int lower, int upper) { this.lower = lower; this.upper = upper; } Node dup(boolean not) { if (not) { return new CIRange(lower, upper); } else { return new CINotRange(lower, upper); } } boolean match(Matcher matcher, int i, CharSequence seq) { if (i < matcher.to) { int ch = Character.codePointAt(seq, i); boolean m = (((ch-lower)|(upper-ch)) < 0); if (m) { int cc = Character.toUpperCase(ch); m = (((cc-lower)|(upper-cc)) < 0); if (m) { cc = Character.toLowerCase(cc); m = (((cc-lower)|(upper-cc)) < 0); } } return (m && next.match(matcher, i+Character.charCount(ch), seq)); } matcher.hitEnd = true; return false; } } /** * Implements the Unicode category ALL and the dot metacharacter when * in dotall mode. */ static final class All extends Node { All() { super(); } Node dup(boolean not) { if (not) { return new Single(-1); } else { return new All(); } } boolean match(Matcher matcher, int i, CharSequence seq) { if (i < matcher.to) { return next.match(matcher, i+countChars(seq, i, 1), seq); } matcher.hitEnd = true; return false; } boolean study(TreeInfo info) { info.minLength++; info.maxLength++; return next.study(info); } } /** * Node class for the dot metacharacter when dotall is not enabled. */ static final class Dot extends Node { Dot() { super(); } boolean match(Matcher matcher, int i, CharSequence seq) { if (i < matcher.to) { int ch = Character.codePointAt(seq, i); return (ch != '\n' && ch != '\r' && (ch|1) != '\u2029' && ch != '\u0085' && next.match(matcher, i+Character.charCount(ch), seq)); } matcher.hitEnd = true; return false; } boolean study(TreeInfo info) { info.minLength++; info.maxLength++; return next.study(info); } } /** * Node class for the dot metacharacter when dotall is not enabled * but UNIX_LINES is enabled. */ static final class UnixDot extends Node { UnixDot() { super(); } boolean match(Matcher matcher, int i, CharSequence seq) { if (i < matcher.to) { int ch = Character.codePointAt(seq, i); return (ch != '\n' && next.match(matcher, i+Character.charCount(ch), seq)); } matcher.hitEnd = true; return false; } boolean study(TreeInfo info) { info.minLength++; info.maxLength++; return next.study(info); } } /** * The 0 or 1 quantifier. This one class implements all three types. */ static final class Ques extends Node { Node atom; int type; Ques(Node node, int type) { this.atom = node; this.type = type; } boolean match(Matcher matcher, int i, CharSequence seq) { switch (type) { case GREEDY: return (atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq)) || next.match(matcher, i, seq); case LAZY: return next.match(matcher, i, seq) || (atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq)); case POSSESSIVE: if (atom.match(matcher, i, seq)) i = matcher.last; return next.match(matcher, i, seq); default: return atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq); } } boolean study(TreeInfo info) { if (type != INDEPENDENT) { int minL = info.minLength; atom.study(info); info.minLength = minL; info.deterministic = false; return next.study(info); } else { atom.study(info); return next.study(info); } } } /** * Handles the curly-brace style repetition with a specified minimum and * maximum occurrences. The * quantifier is handled as a special case. * This class handles the three types. */ static final class Curly extends Node { Node atom; int type; int cmin; int cmax; Curly(Node node, int cmin, int cmax, int type) { this.atom = node; this.type = type; this.cmin = cmin; this.cmax = cmax; } boolean match(Matcher matcher, int i, CharSequence seq) { int j; for (j = 0; j < cmin; j++) { if (atom.match(matcher, i, seq)) { i = matcher.last; continue; } return false; } if (type == GREEDY) return match0(matcher, i, j, seq); else if (type == LAZY) return match1(matcher, i, j, seq); else return match2(matcher, i, j, seq); } // Greedy match. // i is the index to start matching at // j is the number of atoms that have matched boolean match0(Matcher matcher, int i, int j, CharSequence seq) { if (j >= cmax) { // We have matched the maximum... continue with the rest of // the regular expression return next.match(matcher, i, seq); } int backLimit = j; while (atom.match(matcher, i, seq)) { // k is the length of this match int k = matcher.last - i; if (k == 0) // Zero length match break; // Move up index and number matched i = matcher.last; j++; // We are greedy so match as many as we can while (j < cmax) { if (!atom.match(matcher, i, seq)) break; if (i + k != matcher.last) { if (match0(matcher, matcher.last, j+1, seq)) return true; break; } i += k; j++; } // Handle backing off if match fails while (j >= backLimit) { if (next.match(matcher, i, seq)) return true; i -= k; j--; } return false; } return next.match(matcher, i, seq); } // Reluctant match. At this point, the minimum has been satisfied. // i is the index to start matching at // j is the number of atoms that have matched boolean match1(Matcher matcher, int i, int j, CharSequence seq) { for (;;) { // Try finishing match without consuming any more if (next.match(matcher, i, seq)) return true; // At the maximum, no match found if (j >= cmax) return false; // Okay, must try one more atom if (!atom.match(matcher, i, seq)) return false; // If we haven't moved forward then must break out if (i == matcher.last) return false; // Move up index and number matched i = matcher.last; j++; } } boolean match2(Matcher matcher, int i, int j, CharSequence seq) { for (; j < cmax; j++) { if (!atom.match(matcher, i, seq)) break; if (i == matcher.last) break; i = matcher.last; } return next.match(matcher, i, seq); } boolean study(TreeInfo info) { // Save original info int minL = info.minLength; int maxL = info.maxLength; boolean maxV = info.maxValid; boolean detm = info.deterministic; info.reset(); atom.study(info); int temp = info.minLength * cmin + minL; if (temp < minL) { temp = 0xFFFFFFF; // arbitrary large number } info.minLength = temp; if (maxV & info.maxValid) { temp = info.maxLength * cmax + maxL; info.maxLength = temp; if (temp < maxL) { info.maxValid = false; } } else { info.maxValid = false; } if (info.deterministic && cmin == cmax) info.deterministic = detm; else info.deterministic = false; return next.study(info); } } /** * Handles the curly-brace style repetition with a specified minimum and * maximum occurrences in deterministic cases. This is an iterative * optimization over the Prolog and Loop system which would handle this * in a recursive way. The * quantifier is handled as a special case. * If capture is true then this class saves group settings and ensures * that groups are unset when backing off of a group match. */ static final class GroupCurly extends Node { Node atom; int type; int cmin; int cmax; int localIndex; int groupIndex; boolean capture; GroupCurly(Node node, int cmin, int cmax, int type, int local, int group, boolean capture) { this.atom = node; this.type = type; this.cmin = cmin; this.cmax = cmax; this.localIndex = local; this.groupIndex = group; this.capture = capture; } boolean match(Matcher matcher, int i, CharSequence seq) { int[] groups = matcher.groups; int[] locals = matcher.locals; int save0 = locals[localIndex]; int save1 = 0; int save2 = 0; if (capture) { save1 = groups[groupIndex]; save2 = groups[groupIndex+1]; } // Notify GroupTail there is no need to setup group info // because it will be set here locals[localIndex] = -1; boolean ret = true; for (int j = 0; j < cmin; j++) { if (atom.match(matcher, i, seq)) { if (capture) { groups[groupIndex] = i; groups[groupIndex+1] = matcher.last; } i = matcher.last; } else { ret = false; break; } } if (!ret) { locals[localIndex] = save0; if (capture) { groups[groupIndex] = save1; groups[groupIndex+1] = save2; } } else if (type == GREEDY) { ret = match0(matcher, i, cmin, seq); } else if (type == LAZY) { ret = match1(matcher, i, cmin, seq); } else { ret = match2(matcher, i, cmin, seq); } return ret; } // Aggressive group match boolean match0(Matcher matcher, int i, int j, CharSequence seq) { int[] groups = matcher.groups; int save0 = 0; int save1 = 0; if (capture) { save0 = groups[groupIndex]; save1 = groups[groupIndex+1]; } for (;;) { if (j >= cmax) break; if (!atom.match(matcher, i, seq)) break; int k = matcher.last - i; if (k <= 0) { if (capture) { groups[groupIndex] = i; groups[groupIndex+1] = i + k; } i = i + k; break; } for (;;) { if (capture) { groups[groupIndex] = i; groups[groupIndex+1] = i + k; } i = i + k; if (++j >= cmax) break; if (!atom.match(matcher, i, seq)) break; if (i + k != matcher.last) { if (match0(matcher, i, j, seq)) return true; break; } } while (j > cmin) { if (next.match(matcher, i, seq)) { if (capture) { groups[groupIndex+1] = i; groups[groupIndex] = i - k; } i = i - k; return true; } // backing off if (capture) { groups[groupIndex+1] = i; groups[groupIndex] = i - k; } i = i - k; j--; } break; } if (capture) { groups[groupIndex] = save0; groups[groupIndex+1] = save1; } return next.match(matcher, i, seq); } // Reluctant matching boolean match1(Matcher matcher, int i, int j, CharSequence seq) { for (;;) { if (next.match(matcher, i, seq)) return true; if (j >= cmax) return false; if (!atom.match(matcher, i, seq)) return false; if (i == matcher.last) return false; if (capture) { matcher.groups[groupIndex] = i; matcher.groups[groupIndex+1] = matcher.last; } i = matcher.last; j++; } } // Possessive matching boolean match2(Matcher matcher, int i, int j, CharSequence seq) { for (; j < cmax; j++) { if (!atom.match(matcher, i, seq)) { break; } if (capture) { matcher.groups[groupIndex] = i; matcher.groups[groupIndex+1] = matcher.last; } if (i == matcher.last) { break; } i = matcher.last; } return next.match(matcher, i, seq); } boolean study(TreeInfo info) { // Save original info int minL = info.minLength; int maxL = info.maxLength; boolean maxV = info.maxValid; boolean detm = info.deterministic; info.reset(); atom.study(info); int temp = info.minLength * cmin + minL; if (temp < minL) { temp = 0xFFFFFFF; // Arbitrary large number } info.minLength = temp; if (maxV & info.maxValid) { temp = info.maxLength * cmax + maxL; info.maxLength = temp; if (temp < maxL) { info.maxValid = false; } } else { info.maxValid = false; } if (info.deterministic && cmin == cmax) { info.deterministic = detm; } else { info.deterministic = false; } return next.study(info); } } /** * Handles the branching of alternations. Note this is also used for * the ? quantifier to branch between the case where it matches once * and where it does not occur. */ static final class Branch extends Node { Node prev; Branch(Node lhs, Node rhs) { this.prev = lhs; this.next = rhs; } boolean match(Matcher matcher, int i, CharSequence seq) { return (prev.match(matcher, i, seq) || next.match(matcher, i, seq)); } boolean study(TreeInfo info) { int minL = info.minLength; int maxL = info.maxLength; boolean maxV = info.maxValid; info.reset(); prev.study(info); int minL2 = info.minLength; int maxL2 = info.maxLength; boolean maxV2 = info.maxValid; info.reset(); next.study(info); info.minLength = minL + Math.min(minL2, info.minLength); info.maxLength = maxL + Math.max(maxL2, info.maxLength); info.maxValid = (maxV & maxV2 & info.maxValid); info.deterministic = false; return false; } } /** * The GroupHead saves the location where the group begins in the locals * and restores them when the match is done. * * The matchRef is used when a reference to this group is accessed later * in the expression. The locals will have a negative value in them to * indicate that we do not want to unset the group if the reference * doesn't match. */ static final class GroupHead extends Node { int localIndex; GroupHead(int localCount) { localIndex = localCount; } boolean match(Matcher matcher, int i, CharSequence seq) { int save = matcher.locals[localIndex]; matcher.locals[localIndex] = i; boolean ret = next.match(matcher, i, seq); matcher.locals[localIndex] = save; return ret; } boolean matchRef(Matcher matcher, int i, CharSequence seq) { int save = matcher.locals[localIndex]; matcher.locals[localIndex] = ~i; // HACK boolean ret = next.match(matcher, i, seq); matcher.locals[localIndex] = save; return ret; } } /** * Recursive reference to a group in the regular expression. It calls * matchRef because if the reference fails to match we would not unset * the group. */ static final class GroupRef extends Node { GroupHead head; GroupRef(GroupHead head) { this.head = head; } boolean match(Matcher matcher, int i, CharSequence seq) { return head.matchRef(matcher, i, seq) && next.match(matcher, matcher.last, seq); } boolean study(TreeInfo info) { info.maxValid = false; info.deterministic = false; return next.study(info); } } /** * The GroupTail handles the setting of group beginning and ending * locations when groups are successfully matched. It must also be able to * unset groups that have to be backed off of. * * The GroupTail node is also used when a previous group is referenced, * and in that case no group information needs to be set. */ static final class GroupTail extends Node { int localIndex; int groupIndex; GroupTail(int localCount, int groupCount) { localIndex = localCount; groupIndex = groupCount + groupCount; } boolean match(Matcher matcher, int i, CharSequence seq) { int tmp = matcher.locals[localIndex]; if (tmp >= 0) { // This is the normal group case. // Save the group so we can unset it if it // backs off of a match. int groupStart = matcher.groups[groupIndex]; int groupEnd = matcher.groups[groupIndex+1]; matcher.groups[groupIndex] = tmp; matcher.groups[groupIndex+1] = i; if (next.match(matcher, i, seq)) { return true; } matcher.groups[groupIndex] = groupStart; matcher.groups[groupIndex+1] = groupEnd; return false; } else { // This is a group reference case. We don't need to save any // group info because it isn't really a group. matcher.last = i; return true; } } } /** * This sets up a loop to handle a recursive quantifier structure. */ static final class Prolog extends Node { Loop loop; Prolog(Loop loop) { this.loop = loop; } boolean match(Matcher matcher, int i, CharSequence seq) { return loop.matchInit(matcher, i, seq); } boolean study(TreeInfo info) { return loop.study(info); } } /** * Handles the repetition count for a greedy Curly. The matchInit * is called from the Prolog to save the index of where the group * beginning is stored. A zero length group check occurs in the * normal match but is skipped in the matchInit. */ static class Loop extends Node { Node body; int countIndex; // local count index in matcher locals int beginIndex; // group beginning index int cmin, cmax; Loop(int countIndex, int beginIndex) { this.countIndex = countIndex; this.beginIndex = beginIndex; } boolean match(Matcher matcher, int i, CharSequence seq) { // Avoid infinite loop in zero-length case. if (i > matcher.locals[beginIndex]) { int count = matcher.locals[countIndex]; // This block is for before we reach the minimum // iterations required for the loop to match if (count < cmin) { matcher.locals[countIndex] = count + 1; boolean b = body.match(matcher, i, seq); // If match failed we must backtrack, so // the loop count should NOT be incremented if (!b) matcher.locals[countIndex] = count; // Return success or failure since we are under // minimum return b; } // This block is for after we have the minimum // iterations required for the loop to match if (count < cmax) { matcher.locals[countIndex] = count + 1; boolean b = body.match(matcher, i, seq); // If match failed we must backtrack, so // the loop count should NOT be incremented if (!b) matcher.locals[countIndex] = count; else return true; } } return next.match(matcher, i, seq); } boolean matchInit(Matcher matcher, int i, CharSequence seq) { int save = matcher.locals[countIndex]; boolean ret = false; if (0 < cmin) { matcher.locals[countIndex] = 1; ret = body.match(matcher, i, seq); } else if (0 < cmax) { matcher.locals[countIndex] = 1; ret = body.match(matcher, i, seq); if (ret == false) ret = next.match(matcher, i, seq); } else { ret = next.match(matcher, i, seq); } matcher.locals[countIndex] = save; return ret; } boolean study(TreeInfo info) { info.maxValid = false; info.deterministic = false; return false; } } /** * Handles the repetition count for a reluctant Curly. The matchInit * is called from the Prolog to save the index of where the group * beginning is stored. A zero length group check occurs in the * normal match but is skipped in the matchInit. */ static final class LazyLoop extends Loop { LazyLoop(int countIndex, int beginIndex) { super(countIndex, beginIndex); } boolean match(Matcher matcher, int i, CharSequence seq) { // Check for zero length group if (i > matcher.locals[beginIndex]) { int count = matcher.locals[countIndex]; if (count < cmin) { matcher.locals[countIndex] = count + 1; boolean result = body.match(matcher, i, seq); // If match failed we must backtrack, so // the loop count should NOT be incremented if (!result) matcher.locals[countIndex] = count; return result; } if (next.match(matcher, i, seq)) return true; if (count < cmax) { matcher.locals[countIndex] = count + 1; boolean result = body.match(matcher, i, seq); // If match failed we must backtrack, so // the loop count should NOT be incremented if (!result) matcher.locals[countIndex] = count; return result; } return false; } return next.match(matcher, i, seq); } boolean matchInit(Matcher matcher, int i, CharSequence seq) { int save = matcher.locals[countIndex]; boolean ret = false; if (0 < cmin) { matcher.locals[countIndex] = 1; ret = body.match(matcher, i, seq); } else if (next.match(matcher, i, seq)) { ret = true; } else if (0 < cmax) { matcher.locals[countIndex] = 1; ret = body.match(matcher, i, seq); } matcher.locals[countIndex] = save; return ret; } boolean study(TreeInfo info) { info.maxValid = false; info.deterministic = false; return false; } } /** * Refers to a group in the regular expression. Attempts to match * whatever the group referred to last matched. */ static class BackRef extends Node { int groupIndex; BackRef(int groupCount) { super(); groupIndex = groupCount + groupCount; } boolean match(Matcher matcher, int i, CharSequence seq) { int j = matcher.groups[groupIndex]; int k = matcher.groups[groupIndex+1]; int groupSize = k - j; // If the referenced group didn't match, neither can this if (j < 0) return false; // If there isn't enough input left no match if (i + groupSize > matcher.to) { matcher.hitEnd = true; return false; } // Check each new char to make sure it matches what the group // referenced matched last time around for (int index=0; index matcher.to) { matcher.hitEnd = true; return false; } // Check each new char to make sure it matches what the group // referenced matched last time around int x = i; for (int index=0; index matcher.to) { matcher.hitEnd = true; return false; } if (atom.match(matcher, i, seq)) { return next.match(matcher, matcher.last, seq); } i += countChars(seq, i, 1); matcher.first++; } } boolean study(TreeInfo info) { atom.study(info); info.maxValid = false; info.deterministic = false; return next.study(info); } } static final class Conditional extends Node { Node cond, yes, not; Conditional(Node cond, Node yes, Node not) { this.cond = cond; this.yes = yes; this.not = not; } boolean match(Matcher matcher, int i, CharSequence seq) { if (cond.match(matcher, i, seq)) { return yes.match(matcher, i, seq); } else { return not.match(matcher, i, seq); } } boolean study(TreeInfo info) { int minL = info.minLength; int maxL = info.maxLength; boolean maxV = info.maxValid; info.reset(); yes.study(info); int minL2 = info.minLength; int maxL2 = info.maxLength; boolean maxV2 = info.maxValid; info.reset(); not.study(info); info.minLength = minL + Math.min(minL2, info.minLength); info.maxLength = maxL + Math.max(maxL2, info.maxLength); info.maxValid = (maxV & maxV2 & info.maxValid); info.deterministic = false; return next.study(info); } } /** * Zero width positive lookahead. */ static final class Pos extends Node { Node cond; Pos(Node cond) { this.cond = cond; } boolean match(Matcher matcher, int i, CharSequence seq) { int savedTo = matcher.to; boolean conditionMatched = false; // Relax transparent region boundaries for lookahead if (matcher.transparentBounds) matcher.to = matcher.getTextLength(); try { conditionMatched = cond.match(matcher, i, seq); } finally { // Reinstate region boundaries matcher.to = savedTo; } return conditionMatched && next.match(matcher, i, seq); } } /** * Zero width negative lookahead. */ static final class Neg extends Node { Node cond; Neg(Node cond) { this.cond = cond; } boolean match(Matcher matcher, int i, CharSequence seq) { int savedTo = matcher.to; boolean conditionMatched = false; // Relax transparent region boundaries for lookahead if (matcher.transparentBounds) matcher.to = matcher.getTextLength(); try { if (i < matcher.to) { conditionMatched = !cond.match(matcher, i, seq); } else { // If a negative lookahead succeeds then more input // could cause it to fail! matcher.requireEnd = true; conditionMatched = !cond.match(matcher, i, seq); } } finally { // Reinstate region boundaries matcher.to = savedTo; } return conditionMatched && next.match(matcher, i, seq); } } /** * Zero width positive lookbehind. */ static class Behind extends Node { Node cond; int rmax, rmin; Behind(Node cond, int rmax, int rmin) { this.cond = cond; this.rmax = rmax; this.rmin = rmin; } boolean match(Matcher matcher, int i, CharSequence seq) { int savedFrom = matcher.from; boolean conditionMatched = false; int startIndex = (!matcher.transparentBounds) ? matcher.from : 0; int from = Math.max(i - rmax, startIndex); for (int j = i - rmin; j >= from; j--) { // Relax transparent region boundaries for lookbehind if (matcher.transparentBounds) matcher.from = 0; try { conditionMatched = (cond.match(matcher, j, seq) && matcher.last == i); } finally { // Reinstate region boundaries matcher.from = savedFrom; } if (conditionMatched) return next.match(matcher, i, seq); } return false; } } /** * Zero width positive lookbehind, including supplementary * characters or unpaired surrogates. */ static final class BehindS extends Behind { BehindS(Node cond, int rmax, int rmin) { super(cond, rmax, rmin); } boolean match(Matcher matcher, int i, CharSequence seq) { int rmaxChars = countChars(seq, i, -rmax); int rminChars = countChars(seq, i, -rmin); int savedFrom = matcher.from; int startIndex = (!matcher.transparentBounds) ? matcher.from : 0; boolean conditionMatched = false; int from = Math.max(i - rmaxChars, startIndex); for (int j = i - rminChars; j >= from; j -= j>from ? countChars(seq, j, -1) : 1) { // Relax transparent region boundaries for lookbehind if (matcher.transparentBounds) matcher.from = 0; try { conditionMatched = (cond.match(matcher, j, seq) && matcher.last == i); } finally { // Reinstate region boundaries matcher.from = savedFrom; } if (conditionMatched) return next.match(matcher, i, seq); } return false; } } /** * Zero width negative lookbehind. */ static class NotBehind extends Node { Node cond; int rmax, rmin; NotBehind(Node cond, int rmax, int rmin) { this.cond = cond; this.rmax = rmax; this.rmin = rmin; } boolean match(Matcher matcher, int i, CharSequence seq) { int savedFrom = matcher.from; boolean conditionMatched = false; int startIndex = (!matcher.transparentBounds) ? matcher.from : 0; int from = Math.max(i - rmax, startIndex); for (int j = i - rmin; j >= from; j--) { // Relax transparent region boundaries for lookbehind if (matcher.transparentBounds) matcher.from = 0; try { conditionMatched = (cond.match(matcher, j, seq) && matcher.last == i); } finally { // Reinstate region boundaries matcher.from = savedFrom; } if (conditionMatched) return false; } return next.match(matcher, i, seq); } } /** * Zero width negative lookbehind, including supplementary * characters or unpaired surrogates. */ static final class NotBehindS extends NotBehind { NotBehindS(Node cond, int rmax, int rmin) { super(cond, rmax, rmin); } boolean match(Matcher matcher, int i, CharSequence seq) { int rmaxChars = countChars(seq, i, -rmax); int rminChars = countChars(seq, i, -rmin); int savedFrom = matcher.from; boolean conditionMatched = false; int startIndex = (!matcher.transparentBounds) ? matcher.from : 0; int from = Math.max(i - rmaxChars, startIndex); for (int j = i - rminChars; j >= from; j -= j>from ? countChars(seq, j, -1) : 1) { // Relax transparent region boundaries for lookbehind if (matcher.transparentBounds) matcher.from = 0; try { conditionMatched = (cond.match(matcher, j, seq) && matcher.last == i); } finally { // Reinstate region boundaries matcher.from = savedFrom; } if (conditionMatched) return false; } return next.match(matcher, i, seq); } } /** * An object added to the tree when a character class has an additional * range added to it. */ static class Add extends Node { Node lhs, rhs; Add(Node lhs, Node rhs) { this.lhs = lhs; this.rhs = rhs; } boolean match(Matcher matcher, int i, CharSequence seq) { if (i < matcher.to) { return ((lhs.match(matcher, i, seq) || rhs.match(matcher, i, seq)) && next.match(matcher, matcher.last, seq)); } matcher.hitEnd = true; return false; } boolean study(TreeInfo info) { boolean maxV = info.maxValid; boolean detm = info.deterministic; int minL = info.minLength; int maxL = info.maxLength; lhs.study(info); int minL2 = info.minLength; int maxL2 = info.maxLength; info.minLength = minL; info.maxLength = maxL; rhs.study(info); info.minLength = Math.min(minL2, info.minLength); info.maxLength = Math.max(maxL2, info.maxLength); info.maxValid = maxV; info.deterministic = detm; return next.study(info); } } /** * An object added to the tree when a character class has another * nested class in it. */ static class Both extends Node { Node lhs, rhs; Both(Node lhs, Node rhs) { this.lhs = lhs; this.rhs = rhs; } boolean match(Matcher matcher, int i, CharSequence seq) { if (i < matcher.to) { return ((lhs.match(matcher, i, seq) && rhs.match(matcher, i, seq)) && next.match(matcher, matcher.last, seq)); } matcher.hitEnd = true; return false; } boolean study(TreeInfo info) { boolean maxV = info.maxValid; boolean detm = info.deterministic; int minL = info.minLength; int maxL = info.maxLength; lhs.study(info); int minL2 = info.minLength; int maxL2 = info.maxLength; info.minLength = minL; info.maxLength = maxL; rhs.study(info); info.minLength = Math.min(minL2, info.minLength); info.maxLength = Math.max(maxL2, info.maxLength); info.maxValid = maxV; info.deterministic = detm; return next.study(info); } } /** * An object added to the tree when a character class has a range * or single subtracted from it. */ static final class Sub extends Add { Sub(Node lhs, Node rhs) { super(lhs, rhs); } boolean match(Matcher matcher, int i, CharSequence seq) { if (i < matcher.to) { return !rhs.match(matcher, i, seq) && lhs.match(matcher, i, seq) && next.match(matcher, matcher.last, seq); } matcher.hitEnd = true; return false; } boolean study(TreeInfo info) { lhs.study(info); return next.study(info); } } /** * Handles word boundaries. Includes a field to allow this one class to * deal with the different types of word boundaries we can match. The word * characters include underscores, letters, and digits. Non spacing marks * can are also part of a word if they have a base character, otherwise * they are ignored for purposes of finding word boundaries. */ static final class Bound extends Node { static int LEFT = 0x1; static int RIGHT= 0x2; static int BOTH = 0x3; static int NONE = 0x4; int type; Bound(int n) { type = n; } int check(Matcher matcher, int i, CharSequence seq) { int ch; boolean left = false; int startIndex = matcher.from; int endIndex = matcher.to; if (matcher.transparentBounds) { startIndex = 0; endIndex = matcher.getTextLength(); } if (i > startIndex) { ch = Character.codePointBefore(seq, i); left = (ch == '_' || Character.isLetterOrDigit(ch) || ((Character.getType(ch) == Character.NON_SPACING_MARK) && hasBaseCharacter(matcher, i-1, seq))); } boolean right = false; if (i < endIndex) { ch = Character.codePointAt(seq, i); right = (ch == '_' || Character.isLetterOrDigit(ch) || ((Character.getType(ch) == Character.NON_SPACING_MARK) && hasBaseCharacter(matcher, i, seq))); } else { // Tried to access char past the end matcher.hitEnd = true; // The addition of another char could wreck a boundary matcher.requireEnd = true; } return ((left ^ right) ? (right ? LEFT : RIGHT) : NONE); } boolean match(Matcher matcher, int i, CharSequence seq) { return (check(matcher, i, seq) & type) > 0 && next.match(matcher, i, seq); } } /** * Non spacing marks only count as word characters in bounds calculations * if they have a base character. */ private static boolean hasBaseCharacter(Matcher matcher, int i, CharSequence seq) { int start = (!matcher.transparentBounds) ? matcher.from : 0; for (int x=i; x >= start; x--) { int ch = Character.codePointAt(seq, x); if (Character.isLetterOrDigit(ch)) return true; if (Character.getType(ch) == Character.NON_SPACING_MARK) continue; return false; } return false; } /** * Attempts to match a slice in the input using the Boyer-Moore string * matching algorithm. The algorithm is based on the idea that the * pattern can be shifted farther ahead in the search text if it is * matched right to left. *

* The pattern is compared to the input one character at a time, from * the rightmost character in the pattern to the left. If the characters * all match the pattern has been found. If a character does not match, * the pattern is shifted right a distance that is the maximum of two * functions, the bad character shift and the good suffix shift. This * shift moves the attempted match position through the input more * quickly than a naive one position at a time check. *

* The bad character shift is based on the character from the text that * did not match. If the character does not appear in the pattern, the * pattern can be shifted completely beyond the bad character. If the * character does occur in the pattern, the pattern can be shifted to * line the pattern up with the next occurrence of that character. *

* The good suffix shift is based on the idea that some subset on the right * side of the pattern has matched. When a bad character is found, the * pattern can be shifted right by the pattern length if the subset does * not occur again in pattern, or by the amount of distance to the * next occurrence of the subset in the pattern. * * Boyer-Moore search methods adapted from code by Amy Yu. */ static class BnM extends Node { int[] buffer; int[] lastOcc; int[] optoSft; /** * Pre calculates arrays needed to generate the bad character * shift and the good suffix shift. Only the last seven bits * are used to see if chars match; This keeps the tables small * and covers the heavily used ASCII range, but occasionally * results in an aliased match for the bad character shift. */ static Node optimize(Node node) { if (!(node instanceof Slice)) { return node; } int[] src = ((Slice) node).buffer; int patternLength = src.length; // The BM algorithm requires a bit of overhead; // If the pattern is short don't use it, since // a shift larger than the pattern length cannot // be used anyway. if (patternLength < 4) { return node; } int i, j, k; int[] lastOcc = new int[128]; int[] optoSft = new int[patternLength]; // Precalculate part of the bad character shift // It is a table for where in the pattern each // lower 7-bit value occurs for (i = 0; i < patternLength; i++) { lastOcc[src[i]&0x7F] = i + 1; } // Precalculate the good suffix shift // i is the shift amount being considered NEXT: for (i = patternLength; i > 0; i--) { // j is the beginning index of suffix being considered for (j = patternLength - 1; j >= i; j--) { // Testing for good suffix if (src[j] == src[j-i]) { // src[j..len] is a good suffix optoSft[j-1] = i; } else { // No match. The array has already been // filled up with correct values before. continue NEXT; } } // This fills up the remaining of optoSft // any suffix can not have larger shift amount // then its sub-suffix. Why??? while (j > 0) { optoSft[--j] = i; } } // Set the guard value because of unicode compression optoSft[patternLength-1] = 1; if (node instanceof SliceS) return new BnMS(src, lastOcc, optoSft, node.next); return new BnM(src, lastOcc, optoSft, node.next); } BnM(int[] src, int[] lastOcc, int[] optoSft, Node next) { this.buffer = src; this.lastOcc = lastOcc; this.optoSft = optoSft; this.next = next; } boolean match(Matcher matcher, int i, CharSequence seq) { int[] src = buffer; int patternLength = src.length; int last = matcher.to - patternLength; // Loop over all possible match positions in text NEXT: while (i <= last) { // Loop over pattern from right to left for (int j = patternLength - 1; j >= 0; j--) { int ch = seq.charAt(i+j); if (ch != src[j]) { // Shift search to the right by the maximum of the // bad character shift and the good suffix shift i += Math.max(j + 1 - lastOcc[ch&0x7F], optoSft[j]); continue NEXT; } } // Entire pattern matched starting at i matcher.first = i; boolean ret = next.match(matcher, i + patternLength, seq); if (ret) { matcher.first = i; matcher.groups[0] = matcher.first; matcher.groups[1] = matcher.last; return true; } i++; } // BnM is only used as the leading node in the unanchored case, // and it replaced its Start() which always searches to the end // if it doesn't find what it's looking for, so hitEnd is true. matcher.hitEnd = true; return false; } boolean study(TreeInfo info) { info.minLength += buffer.length; info.maxValid = false; return next.study(info); } } /** * Supplementary support version of BnM(). Unpaired surrogates are * also handled by this class. */ static final class BnMS extends BnM { int lengthInChars; BnMS(int[] src, int[] lastOcc, int[] optoSft, Node next) { super(src, lastOcc, optoSft, next); for (int x = 0; x < buffer.length; x++) { lengthInChars += Character.charCount(buffer[x]); } } boolean match(Matcher matcher, int i, CharSequence seq) { int[] src = buffer; int patternLength = src.length; int last = matcher.to - lengthInChars; // Loop over all possible match positions in text NEXT: while (i <= last) { // Loop over pattern from right to left int ch; for (int j = countChars(seq, i, patternLength), x = patternLength - 1; j > 0; j -= Character.charCount(ch), x--) { ch = Character.codePointBefore(seq, i+j); if (ch != src[x]) { // Shift search to the right by the maximum of the // bad character shift and the good suffix shift int n = Math.max(x + 1 - lastOcc[ch&0x7F], optoSft[x]); i += countChars(seq, i, n); continue NEXT; } } // Entire pattern matched starting at i matcher.first = i; boolean ret = next.match(matcher, i + lengthInChars, seq); if (ret) { matcher.first = i; matcher.groups[0] = matcher.first; matcher.groups[1] = matcher.last; return true; } i += countChars(seq, i, 1); } matcher.hitEnd = true; return false; } } /** * Node class for matching characters in a Unicode block */ static final class UBlock extends Node { Character.UnicodeBlock block; boolean complementMe = false; UBlock() { } UBlock(Character.UnicodeBlock block, boolean not) { this.block = block; this.complementMe = not; } Node dup(boolean not) { if (not) return new UBlock(block, !complementMe); else return new UBlock(block, complementMe); } boolean match(Matcher matcher, int i, CharSequence seq) { if (complementMe) return notMatch(matcher, i, seq); if (i < matcher.to) { int ch = Character.codePointAt(seq, i); return (block == Character.UnicodeBlock.of(ch) && (next.match(matcher, i+Character.charCount(ch), seq))); } matcher.hitEnd = true; return false; } boolean notMatch(Matcher matcher, int i, CharSequence seq) { if (i < matcher.to) { int ch = Character.codePointAt(seq, i); return (block != Character.UnicodeBlock.of(ch) && (next.match(matcher, i+Character.charCount(ch), seq))); } matcher.hitEnd = true; return false; } boolean study(TreeInfo info) { info.minLength++; info.maxLength++; return next.study(info); } } /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// /** * This must be the very first initializer. */ static Node accept = new Node(); static Node lastAccept = new LastNode(); static class categoryNames { static HashMap cMap = new HashMap(); static { cMap.put("Cn", new Category(1<<0)); // UNASSIGNED cMap.put("Lu", new Category(1<<1)); // UPPERCASE_LETTER cMap.put("Ll", new Category(1<<2)); // LOWERCASE_LETTER cMap.put("Lt", new Category(1<<3)); // TITLECASE_LETTER cMap.put("Lm", new Category(1<<4)); // MODIFIER_LETTER cMap.put("Lo", new Category(1<<5)); // OTHER_LETTER cMap.put("Mn", new Category(1<<6)); // NON_SPACING_MARK cMap.put("Me", new Category(1<<7)); // ENCLOSING_MARK cMap.put("Mc", new Category(1<<8)); // COMBINING_SPACING_MARK cMap.put("Nd", new Category(1<<9)); // DECIMAL_DIGIT_NUMBER cMap.put("Nl", new Category(1<<10)); // LETTER_NUMBER cMap.put("No", new Category(1<<11)); // OTHER_NUMBER cMap.put("Zs", new Category(1<<12)); // SPACE_SEPARATOR cMap.put("Zl", new Category(1<<13)); // LINE_SEPARATOR cMap.put("Zp", new Category(1<<14)); // PARAGRAPH_SEPARATOR cMap.put("Cc", new Category(1<<15)); // CNTRL cMap.put("Cf", new Category(1<<16)); // FORMAT cMap.put("Co", new Category(1<<18)); // PRIVATE USE cMap.put("Cs", new Category(1<<19)); // SURROGATE cMap.put("Pd", new Category(1<<20)); // DASH_PUNCTUATION cMap.put("Ps", new Category(1<<21)); // START_PUNCTUATION cMap.put("Pe", new Category(1<<22)); // END_PUNCTUATION cMap.put("Pc", new Category(1<<23)); // CONNECTOR_PUNCTUATION cMap.put("Po", new Category(1<<24)); // OTHER_PUNCTUATION cMap.put("Sm", new Category(1<<25)); // MATH_SYMBOL cMap.put("Sc", new Category(1<<26)); // CURRENCY_SYMBOL cMap.put("Sk", new Category(1<<27)); // MODIFIER_SYMBOL cMap.put("So", new Category(1<<28)); // OTHER_SYMBOL cMap.put("L", new Category(0x0000003E)); // LETTER cMap.put("M", new Category(0x000001C0)); // MARK cMap.put("N", new Category(0x00000E00)); // NUMBER cMap.put("Z", new Category(0x00007000)); // SEPARATOR cMap.put("C", new Category(0x000D8000)); // CONTROL cMap.put("P", new Category(0x01F00000)); // PUNCTUATION cMap.put("S", new Category(0x1E000000)); // SYMBOL cMap.put("LD", new Category(0x0000023E)); // LETTER_OR_DIGIT cMap.put("L1", new Range(0x000000FF)); // Latin-1 cMap.put("all", new All()); // ALL cMap.put("ASCII", new Range(0x0000007F)); // ASCII cMap.put("Alnum", new Ctype(ASCII.ALNUM)); // Alphanumeric characters cMap.put("Alpha", new Ctype(ASCII.ALPHA)); // Alphabetic characters cMap.put("Blank", new Ctype(ASCII.BLANK)); // Space and tab characters cMap.put("Cntrl", new Ctype(ASCII.CNTRL)); // Control characters cMap.put("Digit", new Range(('0'<<16)|'9')); // Numeric characters cMap.put("Graph", new Ctype(ASCII.GRAPH)); // printable and visible cMap.put("Lower", new Range(('a'<<16)|'z')); // Lower-case alphabetic cMap.put("Print", new Range(0x0020007E)); // Printable characters cMap.put("Punct", new Ctype(ASCII.PUNCT)); // Punctuation characters cMap.put("Space", new Ctype(ASCII.SPACE)); // Space characters cMap.put("Upper", new Range(('A'<<16)|'Z')); // Upper-case alphabetic cMap.put("XDigit", new Ctype(ASCII.XDIGIT)); // hexadecimal digits cMap.put("javaLowerCase", new JavaLowerCase()); cMap.put("javaUpperCase", new JavaUpperCase()); cMap.put("javaTitleCase", new JavaTitleCase()); cMap.put("javaDigit", new JavaDigit()); cMap.put("javaDefined", new JavaDefined()); cMap.put("javaLetter", new JavaLetter()); cMap.put("javaLetterOrDigit", new JavaLetterOrDigit()); cMap.put("javaJavaIdentifierStart", new JavaJavaIdentifierStart()); cMap.put("javaJavaIdentifierPart", new JavaJavaIdentifierPart()); cMap.put("javaUnicodeIdentifierStart", new JavaUnicodeIdentifierStart()); cMap.put("javaUnicodeIdentifierPart", new JavaUnicodeIdentifierPart()); cMap.put("javaIdentifierIgnorable", new JavaIdentifierIgnorable()); cMap.put("javaSpaceChar", new JavaSpaceChar()); cMap.put("javaWhitespace", new JavaWhitespace()); cMap.put("javaISOControl", new JavaISOControl()); cMap.put("javaMirrored", new JavaMirrored()); } } }