/* * @(#)BigDecimal.java 1.55 05/08/09 * * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. */ /* * @(#)BigDecimal.java 1.x 01/xx/xx * * Copyright 1996-2001 Sun Microsystems, Inc. All Rights Reserved. * Portions Copyright IBM Corporation, 2001. All Rights Reserved. * * This software is the proprietary information of Sun Microsystems, Inc. * Use is subject to license terms. * */ package java.math; /** * Immutable, arbitrary-precision signed decimal numbers. A * BigDecimal consists of an arbitrary precision integer * unscaled value and a 32-bit integer scale. If zero * or positive, the scale is the number of digits to the right of the * decimal point. If negative, the unscaled value of the number is * multiplied by ten to the power of the negation of the scale. The * value of the number represented by the BigDecimal is * therefore (unscaledValue × 10-scale). * *

The BigDecimal class provides operations for * arithmetic, scale manipulation, rounding, comparison, hashing, and * format conversion. The {@link #toString} method provides a * canonical representation of a BigDecimal. * *

The BigDecimal class gives its user complete control * over rounding behavior. If no rounding mode is specified and the * exact result cannot be represented, an exception is thrown; * otherwise, calculations can be carried out to a chosen precision * and rounding mode by supplying an appropriate {@link MathContext} * object to the operation. In either case, eight rounding * modes are provided for the control of rounding. Using the * integer fields in this class (such as {@link #ROUND_HALF_UP}) to * represent rounding mode is largely obsolete; the enumeration values * of the RoundingMode enum, (such as {@link * RoundingMode#HALF_UP}) should be used instead. * *

When a MathContext object is supplied with a precision * setting of 0 (for example, {@link MathContext#UNLIMITED}), * arithmetic operations are exact, as are the arithmetic methods * which take no MathContext object. (This is the only * behavior that was supported in releases prior to 5.) As a * corollary of computing the exact result, the rounding mode setting * of a MathContext object with a precision setting of 0 is * not used and thus irrelevant. In the case of divide, the exact * quotient could have an infinitely long decimal expansion; for * example, 1 divided by 3. If the quotient has a nonterminating * decimal expansion and the operation is specified to return an exact * result, an ArithmeticException is thrown. Otherwise, the * exact result of the division is returned, as done for other * operations. * *

When the precision setting is not 0, the rules of * BigDecimal arithmetic are broadly compatible with selected * modes of operation of the arithmetic defined in ANSI X3.274-1996 * and ANSI X3.274-1996/AM 1-2000 (section 7.4). Unlike those * standards, BigDecimal includes many rounding modes, which * were mandatory for division in BigDecimal releases prior * to 5. Any conflicts between these ANSI standards and the * BigDecimal specification are resolved in favor of * BigDecimal. * *

Since the same numerical value can have different * representations (with different scales), the rules of arithmetic * and rounding must specify both the numerical result and the scale * used in the result's representation. * * *

In general the rounding modes and precision setting determine * how operations return results with a limited number of digits when * the exact result has more digits (perhaps infinitely many in the * case of division) than the number of digits returned. * * First, the * total number of digits to return is specified by the * MathContext's precision setting; this determines * the result's precision. The digit count starts from the * leftmost nonzero digit of the exact result. The rounding mode * determines how any discarded trailing digits affect the returned * result. * *

For all arithmetic operators , the operation is carried out as * though an exact intermediate result were first calculated and then * rounded to the number of digits specified by the precision setting * (if necessary), using the selected rounding mode. If the exact * result is not returned, some digit positions of the exact result * are discarded. When rounding increases the magnitude of the * returned result, it is possible for a new digit position to be * created by a carry propagating to a leading "9" digit. * For example, rounding the value 999.9 to three digits rounding up * would be numerically equal to one thousand, represented as * 100×101. In such cases, the new "1" is * the leading digit position of the returned result. * *

Besides a logical exact result, each arithmetic operation has a * preferred scale for representing a result. The preferred * scale for each operation is listed in the table below. * * * * * * * * *

Preferred Scales for Results of Arithmetic Operations *

OperationPreferred Scale of Result
Addmax(addend.scale(), augend.scale())
Subtractmax(minuend.scale(), subtrahend.scale())
Multiplymultiplier.scale() + multiplicand.scale()
Dividedividend.scale() - divisor.scale()
* * These scales are the ones used by the methods which return exact * arithmetic results; except that an exact divide may have to use a * larger scale since the exact result may have more digits. For * example, 1/32 is 0.03125. * *

Before rounding, the scale of the logical exact intermediate * result is the preferred scale for that operation. If the exact * numerical result cannot be represented in precision * digits, rounding selects the set of digits to return and the scale * of the result is reduced from the scale of the intermediate result * to the least scale which can represent the precision * digits actually returned. If the exact result can be represented * with at most precision digits, the representation * of the result with the scale closest to the preferred scale is * returned. In particular, an exactly representable quotient may be * represented in fewer than precision digits by removing * trailing zeros and decreasing the scale. For example, rounding to * three digits using the {@linkplain RoundingMode#FLOOR floor} * rounding mode,
* * 19/100 = 0.19 // integer=19, scale=2
* * but
* * 21/110 = 0.190 // integer=190, scale=3
* *

Note that for add, subtract, and multiply, the reduction in * scale will equal the number of digit positions of the exact result * which are discarded. If the rounding causes a carry propagation to * create a new high-order digit position, an additional digit of the * result is discarded than when no new digit position is created. * *

Other methods may have slightly different rounding semantics. * For example, the result of the pow method using the * {@linkplain #pow(int, MathContext) specified algorithm} can * occasionally differ from the rounded mathematical result by more * than one unit in the last place, one {@linkplain #ulp() ulp}. * *

Two types of operations are provided for manipulating the scale * of a BigDecimal: scaling/rounding operations and decimal * point motion operations. Scaling/rounding operations ({@link * #setScale setScale} and {@link #round round}) return a * BigDecimal whose value is approximately (or exactly) equal * to that of the operand, but whose scale or precision is the * specified value; that is, they increase or decrease the precision * of the stored number with minimal effect on its value. Decimal * point motion operations ({@link #movePointLeft movePointLeft} and * {@link #movePointRight movePointRight}) return a * BigDecimal created from the operand by moving the decimal * point a specified distance in the specified direction. * *

For the sake of brevity and clarity, pseudo-code is used * throughout the descriptions of BigDecimal methods. The * pseudo-code expression (i + j) is shorthand for "a * BigDecimal whose value is that of the BigDecimal * i added to that of the BigDecimal * j." The pseudo-code expression (i == j) is * shorthand for "true if and only if the * BigDecimal i represents the same value as the * BigDecimal j." Other pseudo-code expressions * are interpreted similarly. Square brackets are used to represent * the particular BigInteger and scale pair defining a * BigDecimal value; for example [19, 2] is the * BigDecimal numerically equal to 0.19 having a scale of 2. * *

Note: care should be exercised if BigDecimal objects * are used as keys in a {@link java.util.SortedMap SortedMap} or * elements in a {@link java.util.SortedSet SortedSet} since * BigDecimal's natural ordering is inconsistent * with equals. See {@link Comparable}, {@link * java.util.SortedMap} or {@link java.util.SortedSet} for more * information. * *

All methods and constructors for this class throw * NullPointerException when passed a null object * reference for any input parameter. * * @see BigInteger * @see MathContext * @see RoundingMode * @see java.util.SortedMap * @see java.util.SortedSet * @author Josh Bloch * @author Mike Cowlishaw * @author Joseph D. Darcy */ public class BigDecimal extends Number implements Comparable { /** * The unscaled value of this BigDecimal, as returned by {@link * #unscaledValue}. * * @serial * @see #unscaledValue */ private volatile BigInteger intVal; /** * The scale of this BigDecimal, as returned by {@link #scale}. * * @serial * @see #scale */ private int scale = 0; // Note: this may have any value, so // calculations must be done in longs /** * The number of decimal digits in this BigDecimal, or 0 if the * number of digits are not known (lookaside information). If * nonzero, the value is guaranteed correct. Use the precision() * method to obtain and set the value if it might be 0. This * field is mutable until set nonzero. * * @since 1.5 */ private volatile transient int precision = 0; /** * Used to store the canonical string representation, if computed. */ private volatile transient String stringCache = null; /** * Sentinel value for {@link #intCompact} indicating the * significand information is only available from {@code intVal}. */ private static final long INFLATED = Long.MIN_VALUE; /** * If the absolute value of the significand of this BigDecimal is * less than or equal to {@code Long.MAX_VALUE}, the value can be * compactly stored in this field and used in computations. */ private transient long intCompact = INFLATED; // All 18-digit base ten strings fit into a long; not all 19-digit // strings will private static final int MAX_COMPACT_DIGITS = 18; private static final int MAX_BIGINT_BITS = 62; /* Appease the serialization gods */ private static final long serialVersionUID = 6108874887143696463L; // Cache of common small BigDecimal values. private static final BigDecimal zeroThroughTen[] = { new BigDecimal(BigInteger.ZERO, 0, 0), new BigDecimal(BigInteger.ONE, 1, 0), new BigDecimal(BigInteger.valueOf(2), 2, 0), new BigDecimal(BigInteger.valueOf(3), 3, 0), new BigDecimal(BigInteger.valueOf(4), 4, 0), new BigDecimal(BigInteger.valueOf(5), 5, 0), new BigDecimal(BigInteger.valueOf(6), 6, 0), new BigDecimal(BigInteger.valueOf(7), 7, 0), new BigDecimal(BigInteger.valueOf(8), 8, 0), new BigDecimal(BigInteger.valueOf(9), 9, 0), new BigDecimal(BigInteger.TEN, 10, 0), }; // Constants /** * The value 0, with a scale of 0. * * @since 1.5 */ public static final BigDecimal ZERO = zeroThroughTen[0]; /** * The value 1, with a scale of 0. * * @since 1.5 */ public static final BigDecimal ONE = zeroThroughTen[1]; /** * The value 10, with a scale of 0. * * @since 1.5 */ public static final BigDecimal TEN = zeroThroughTen[10]; // Constructors /** * Translates a character array representation of a * BigDecimal into a BigDecimal, accepting the * same sequence of characters as the {@link #BigDecimal(String)} * constructor, while allowing a sub-array to be specified. * *

Note that if the sequence of characters is already available * within a character array, using this constructor is faster than * converting the char array to string and using the * BigDecimal(String) constructor . * * @param in char array that is the source of characters. * @param offset first character in the array to inspect. * @param len number of characters to consider. * @throws NumberFormatException if in is not a valid * representation of a BigDecimal or the defined subarray * is not wholly within in. * @since 1.5 */ public BigDecimal(char[] in, int offset, int len) { // This is the primary string to BigDecimal constructor; all // incoming strings end up here; it uses explicit (inline) // parsing for speed and generates at most one intermediate // (temporary) object (a char[] array). // use array bounds checking to handle too-long, len == 0, // bad offset, etc. try { // handle the sign boolean isneg = false; // assume positive if (in[offset] == '-') { isneg = true; // leading minus means negative offset++; len--; } else if (in[offset] == '+') { // leading + allowed offset++; len--; } // should now be at numeric part of the significand int dotoff = -1; // '.' offset, -1 if none int cfirst = offset; // record start of integer long exp = 0; // exponent if (len > in.length) // protect against huge length throw new NumberFormatException(); char coeff[] = new char[len]; // integer significand array char c; // work for (; len > 0; offset++, len--) { c = in[offset]; if ((c >= '0' && c <= '9') || Character.isDigit(c)) { // have digit coeff[precision] = c; precision++; // count of digits continue; } if (c == '.') { // have dot if (dotoff >= 0) // two dots throw new NumberFormatException(); dotoff = offset; continue; } // exponent expected if ((c != 'e') && (c != 'E')) throw new NumberFormatException(); offset++; c = in[offset]; len--; boolean negexp = false; // optional sign if (c == '-' || c == '+') { negexp = (c == '-'); offset++; c = in[offset]; len--; } if (len <= 0) // no exponent digits throw new NumberFormatException(); // skip leading zeros in the exponent while (len > 10 && Character.digit(c, 10) == 0) { offset++; c = in[offset]; len--; } if (len > 10) // too many nonzero exponent digits throw new NumberFormatException(); // c now holds first digit of exponent for (;; len--) { int v; if (c >= '0' && c <= '9') { v = c - '0'; } else { v = Character.digit(c, 10); if (v < 0) // not a digit throw new NumberFormatException(); } exp = exp * 10 + v; if (len == 1) break; // that was final character offset++; c = in[offset]; } if (negexp) // apply sign exp = -exp; // Next test is required for backwards compatibility if ((int)exp != exp) // overflow throw new NumberFormatException(); break; // [saves a test] } // here when no characters left if (precision == 0) // no digits found throw new NumberFormatException(); if (dotoff >= 0) { // had dot; set scale scale = precision - (dotoff - cfirst); // [cannot overflow] } if (exp != 0) { // had significant exponent try { scale = checkScale(-exp + scale); // adjust } catch (ArithmeticException e) { throw new NumberFormatException("Scale out of range."); } } // Remove leading zeros from precision (digits count) int first = 0; for (; (coeff[first] == '0' || Character.digit(coeff[first], 10) == 0) && precision > 1; first++) precision--; // Set the significand .. // Copy significand to exact-sized array, with sign if // negative // Later use: BigInteger(coeff, first, precision) for // both cases, by allowing an extra char at the front of // coeff. char quick[]; if (!isneg) { quick = new char[precision]; System.arraycopy(coeff, first, quick, 0, precision); } else { quick = new char[precision+1]; quick[0] = '-'; System.arraycopy(coeff, first, quick, 1, precision); } if (precision <= MAX_COMPACT_DIGITS) intCompact = Long.parseLong(new String(quick)); else intVal = new BigInteger(quick); // System.out.println(" new: " +intVal+" ["+scale+"] "+precision); } catch (ArrayIndexOutOfBoundsException e) { throw new NumberFormatException(); } catch (NegativeArraySizeException e) { throw new NumberFormatException(); } } /** * Translates a character array representation of a * BigDecimal into a BigDecimal, accepting the * same sequence of characters as the {@link #BigDecimal(String)} * constructor, while allowing a sub-array to be specified and * with rounding according to the context settings. * *

Note that if the sequence of characters is already available * within a character array, using this constructor is faster than * converting the char array to string and using the * BigDecimal(String) constructor . * * @param in char array that is the source of characters. * @param offset first character in the array to inspect. * @param len number of characters to consider.. * @param mc the context to use. * @throws ArithmeticException if the result is inexact but the * rounding mode is UNNECESSARY. * @throws NumberFormatException if in is not a valid * representation of a BigDecimal or the defined subarray * is not wholly within in. * @since 1.5 */ public BigDecimal(char[] in, int offset, int len, MathContext mc) { this(in, offset, len); if (mc.precision > 0) roundThis(mc); } /** * Translates a character array representation of a * BigDecimal into a BigDecimal, accepting the * same sequence of characters as the {@link #BigDecimal(String)} * constructor. * *

Note that if the sequence of characters is already available * as a character array, using this constructor is faster than * converting the char array to string and using the * BigDecimal(String) constructor . * * @param in char array that is the source of characters. * @throws NumberFormatException if in is not a valid * representation of a BigDecimal. * @since 1.5 */ public BigDecimal(char[] in) { this(in, 0, in.length); } /** * Translates a character array representation of a * BigDecimal into a BigDecimal, accepting the * same sequence of characters as the {@link #BigDecimal(String)} * constructor and with rounding according to the context * settings. * *

Note that if the sequence of characters is already available * as a character array, using this constructor is faster than * converting the char array to string and using the * BigDecimal(String) constructor . * * @param in char array that is the source of characters. * @param mc the context to use. * @throws ArithmeticException if the result is inexact but the * rounding mode is UNNECESSARY. * @throws NumberFormatException if in is not a valid * representation of a BigDecimal. * @since 1.5 */ public BigDecimal(char[] in, MathContext mc) { this(in, 0, in.length, mc); } /** * Translates the string representation of a BigDecimal * into a BigDecimal. The string representation consists * of an optional sign, '+' ('\u002B') or * '-' ('\u002D'), followed by a sequence of * zero or more decimal digits ("the integer"), optionally * followed by a fraction, optionally followed by an exponent. * *

The fraction consists of a decimal point followed by zero * or more decimal digits. The string must contain at least one * digit in either the integer or the fraction. The number formed * by the sign, the integer and the fraction is referred to as the * significand. * *

The exponent consists of the character 'e' * ('\u0075') or 'E' ('\u0045') * followed by one or more decimal digits. The value of the * exponent must lie between -{@link Integer#MAX_VALUE} ({@link * Integer#MIN_VALUE}+1) and {@link Integer#MAX_VALUE}, inclusive. * *

More formally, the strings this constructor accepts are * described by the following grammar: *

*
*
BigDecimalString: *
Signopt Significand Exponentopt *

*

Sign: *
+ *
- *

*

Significand: *
IntegerPart . FractionPartopt *
. FractionPart *
IntegerPart *

*

IntegerPart: *
Digits *

*

FractionPart: *
Digits *

*

Exponent: *
ExponentIndicator SignedInteger *

*

ExponentIndicator: *
e *
E *

*

SignedInteger: *
Signopt Digits *

*

Digits: *
Digit *
Digits Digit *

*

Digit: *
any character for which {@link Character#isDigit} * returns true, including 0, 1, 2 ... *
*
* *

The scale of the returned BigDecimal will be the * number of digits in the fraction, or zero if the string * contains no decimal point, subject to adjustment for any * exponent; if the string contains an exponent, the exponent is * subtracted from the scale. The value of the resulting scale * must lie between Integer.MIN_VALUE and * Integer.MAX_VALUE, inclusive. * *

The character-to-digit mapping is provided by {@link * java.lang.Character#digit} set to convert to radix 10. The * String may not contain any extraneous characters (whitespace, * for example). * *

Examples:
* The value of the returned BigDecimal is equal to * significand × 10 exponent. * For each string on the left, the resulting representation * [BigInteger, scale] is shown on the right. *

     * "0"            [0,0]
     * "0.00"         [0,2]
     * "123"          [123,0]
     * "-123"         [-123,0]
     * "1.23E3"       [123,-1]
     * "1.23E+3"      [123,-1]
     * "12.3E+7"      [123,-6]
     * "12.0"         [120,1]
     * "12.3"         [123,1]
     * "0.00123"      [123,5]
     * "-1.23E-12"    [-123,14]
     * "1234.5E-4"    [12345,5]
     * "0E+7"         [0,-7]
     * "-0"           [0,0]
     * 
* *

Note: For values other than float and * double NaN and ±Infinity, this constructor is * compatible with the values returned by {@link Float#toString} * and {@link Double#toString}. This is generally the preferred * way to convert a float or double into a * BigDecimal, as it doesn't suffer from the unpredictability of * the {@link #BigDecimal(double)} constructor. * * @param val String representation of BigDecimal. * * @throws NumberFormatException if val is not a valid * representation of a BigDecimal. */ public BigDecimal(String val) { this(val.toCharArray(), 0, val.length()); } /** * Translates the string representation of a BigDecimal * into a BigDecimal, accepting the same strings as the * {@link #BigDecimal(String)} constructor, with rounding * according to the context settings. * * @param val string representation of a BigDecimal. * @param mc the context to use. * @throws ArithmeticException if the result is inexact but the * rounding mode is UNNECESSARY. * @throws NumberFormatException if val is not a valid * representation of a BigDecimal. * @since 1.5 */ public BigDecimal(String val, MathContext mc) { this(val.toCharArray(), 0, val.length()); if (mc.precision > 0) roundThis(mc); } /** * Translates a double into a BigDecimal which * is the exact decimal representation of the double's * binary floating-point value. The scale of the returned * BigDecimal is the smallest value such that * (10scale × val) is an integer. *

* Notes: *

    *
  1. * The results of this constructor can be somewhat unpredictable. * One might assume that writing new BigDecimal(0.1) in * Java creates a BigDecimal which is exactly equal to * 0.1 (an unscaled value of 1, with a scale of 1), but it is * actually equal to * 0.1000000000000000055511151231257827021181583404541015625. * This is because 0.1 cannot be represented exactly as a * double (or, for that matter, as a binary fraction of * any finite length). Thus, the value that is being passed * in to the constructor is not exactly equal to 0.1, * appearances notwithstanding. * *
  2. * The String constructor, on the other hand, is * perfectly predictable: writing new BigDecimal("0.1") * creates a BigDecimal which is exactly equal to * 0.1, as one would expect. Therefore, it is generally * recommended that the {@linkplain #BigDecimal(String) * String constructor} be used in preference to this one. * *
  3. * When a double must be used as a source for a * BigDecimal, note that this constructor provides an * exact conversion; it does not give the same result as * converting the double to a String using the * {@link Double#toString(double)} method and then using the * {@link #BigDecimal(String)} constructor. To get that result, * use the static {@link #valueOf(double)} method. *
* * @param val double value to be converted to * BigDecimal. * @throws NumberFormatException if val is infinite or NaN. */ public BigDecimal(double val) { if (Double.isInfinite(val) || Double.isNaN(val)) throw new NumberFormatException("Infinite or NaN"); // Translate the double into sign, exponent and significand, according // to the formulae in JLS, Section 20.10.22. long valBits = Double.doubleToLongBits(val); int sign = ((valBits >> 63)==0 ? 1 : -1); int exponent = (int) ((valBits >> 52) & 0x7ffL); long significand = (exponent==0 ? (valBits & ((1L<<52) - 1)) << 1 : (valBits & ((1L<<52) - 1)) | (1L<<52)); exponent -= 1075; // At this point, val == sign * significand * 2**exponent. /* * Special case zero to supress nonterminating normalization * and bogus scale calculation. */ if (significand == 0) { intVal = BigInteger.ZERO; intCompact = 0; precision = 1; return; } // Normalize while((significand & 1) == 0) { // i.e., significand is even significand >>= 1; exponent++; } // Calculate intVal and scale intVal = BigInteger.valueOf(sign*significand); if (exponent < 0) { intVal = intVal.multiply(BigInteger.valueOf(5).pow(-exponent)); scale = -exponent; } else if (exponent > 0) { intVal = intVal.multiply(BigInteger.valueOf(2).pow(exponent)); } if (intVal.bitLength() <= MAX_BIGINT_BITS) { intCompact = intVal.longValue(); } } /** * Translates a double into a BigDecimal, with * rounding according to the context settings. The scale of the * BigDecimal is the smallest value such that * (10scale × val) is an integer. * *

The results of this constructor can be somewhat unpredictable * and its use is generally not recommended; see the notes under * the {@link #BigDecimal(double)} constructor. * * @param val double value to be converted to * BigDecimal. * @param mc the context to use. * @throws ArithmeticException if the result is inexact but the * RoundingMode is UNNECESSARY. * @throws NumberFormatException if val is infinite or NaN. * @since 1.5 */ public BigDecimal(double val, MathContext mc) { this(val); if (mc.precision > 0) roundThis(mc); } /** * Translates a BigInteger into a BigDecimal. * The scale of the BigDecimal is zero. * * @param val BigInteger value to be converted to * BigDecimal. */ public BigDecimal(BigInteger val) { intVal = val; if (val.bitLength() <= MAX_BIGINT_BITS) { intCompact = val.longValue(); } } /** * Translates a BigInteger into a BigDecimal * rounding according to the context settings. The scale of the * BigDecimal is zero. * * @param val BigInteger value to be converted to * BigDecimal. * @param mc the context to use. * @throws ArithmeticException if the result is inexact but the * rounding mode is UNNECESSARY. * @since 1.5 */ public BigDecimal(BigInteger val, MathContext mc) { intVal = val; if (mc.precision > 0) roundThis(mc); } /** * Translates a BigInteger unscaled value and an * int scale into a BigDecimal. The value of * the BigDecimal is * (unscaledVal × 10-scale). * * @param unscaledVal unscaled value of the BigDecimal. * @param scale scale of the BigDecimal. */ public BigDecimal(BigInteger unscaledVal, int scale) { // Negative scales are now allowed intVal = unscaledVal; this.scale = scale; if (unscaledVal.bitLength() <= MAX_BIGINT_BITS) { intCompact = unscaledVal.longValue(); } } /** * Translates a BigInteger unscaled value and an * int scale into a BigDecimal, with rounding * according to the context settings. The value of the * BigDecimal is (unscaledVal × * 10-scale), rounded according to the * precision and rounding mode settings. * * @param unscaledVal unscaled value of the BigDecimal. * @param scale scale of the BigDecimal. * @param mc the context to use. * @throws ArithmeticException if the result is inexact but the * rounding mode is UNNECESSARY. * @since 1.5 */ public BigDecimal(BigInteger unscaledVal, int scale, MathContext mc) { intVal = unscaledVal; this.scale = scale; if (mc.precision > 0) roundThis(mc); } /** * Translates an int into a BigDecimal. The * scale of the BigDecimal is zero. * * @param val int value to be converted to * BigDecimal. * @since 1.5 */ public BigDecimal(int val) { intCompact = val; } /** * Translates an int into a BigDecimal, with * rounding according to the context settings. The scale of the * BigDecimal, before any rounding, is zero. * * @param val int value to be converted to BigDecimal. * @param mc the context to use. * @throws ArithmeticException if the result is inexact but the * rounding mode is UNNECESSARY. * @since 1.5 */ public BigDecimal(int val, MathContext mc) { intCompact = val; if (mc.precision > 0) roundThis(mc); } /** * Translates a long into a BigDecimal. The * scale of the BigDecimal is zero. * * @param val long value to be converted to BigDecimal. * @since 1.5 */ public BigDecimal(long val) { if (compactLong(val)) intCompact = val; else intVal = BigInteger.valueOf(val); } /** * Translates a long into a BigDecimal, with * rounding according to the context settings. The scale of the * BigDecimal, before any rounding, is zero. * * @param val long value to be converted to BigDecimal. * @param mc the context to use. * @throws ArithmeticException if the result is inexact but the * rounding mode is UNNECESSARY. * @since 1.5 */ public BigDecimal(long val, MathContext mc) { if (compactLong(val)) intCompact = val; else intVal = BigInteger.valueOf(val); if (mc.precision > 0) roundThis(mc); } /** * Trusted internal constructor */ private BigDecimal(long val, int scale) { this.intCompact = val; this.scale = scale; } /** * Trusted internal constructor */ private BigDecimal(BigInteger intVal, long val, int scale) { this.intVal = intVal; this.intCompact = val; this.scale = scale; } // Static Factory Methods /** * Translates a long unscaled value and an * int scale into a BigDecimal. This * "static factory method" is provided in preference to * a (long, int) constructor because it * allows for reuse of frequently used BigDecimal values.. * * @param unscaledVal unscaled value of the BigDecimal. * @param scale scale of the BigDecimal. * @return a BigDecimal whose value is * (unscaledVal × 10-scale). */ public static BigDecimal valueOf(long unscaledVal, int scale) { if (scale == 0 && unscaledVal >= 0 && unscaledVal <= 10) { return zeroThroughTen[(int)unscaledVal]; } if (compactLong(unscaledVal)) return new BigDecimal(unscaledVal, scale); return new BigDecimal(BigInteger.valueOf(unscaledVal), scale); } /** * Translates a long value into a BigDecimal * with a scale of zero. This "static factory method" * is provided in preference to a (long) constructor * because it allows for reuse of frequently used * BigDecimal values. * * @param val value of the BigDecimal. * @return a BigDecimal whose value is val. */ public static BigDecimal valueOf(long val) { return valueOf(val, 0); } /** * Translates a double into a BigDecimal, using * the double's canonical string representation provided * by the {@link Double#toString(double)} method. * *

Note: This is generally the preferred way to convert * a double (or float) into a * BigDecimal, as the value returned is equal to that * resulting from constructing a BigDecimal from the * result of using {@link Double#toString(double)}. * * @param val double to convert to a BigDecimal. * @return a BigDecimal whose value is equal to or approximately * equal to the value of val. * @throws NumberFormatException if val is infinite or NaN. * @since 1.5 */ public static BigDecimal valueOf(double val) { // Reminder: a zero double returns '0.0', so we cannot fastpath // to use the constant ZERO. This might be important enough to // justify a factory approach, a cache, or a few private // constants, later. return new BigDecimal(Double.toString(val)); } // Arithmetic Operations /** * Returns a BigDecimal whose value is (this + * augend), and whose scale is max(this.scale(), * augend.scale()). * * @param augend value to be added to this BigDecimal. * @return this + augend */ public BigDecimal add(BigDecimal augend) { BigDecimal arg[] = {this, augend}; matchScale(arg); long x = arg[0].intCompact; long y = arg[1].intCompact; // Might be able to do a more clever check incorporating the // inflated check into the overflow computation. if (x != INFLATED && y != INFLATED) { long sum = x + y; /* * If the sum is not an overflowed value, continue to use * the compact representation. if either of x or y is * INFLATED, the sum should also be regarded as an * overflow. See "Hacker's Delight" section 2-12 for * explanation of the overflow test. */ if ( (((sum ^ x) & (sum ^ y)) >> 63) == 0L ) // not overflowed return BigDecimal.valueOf(sum, arg[0].scale); } return new BigDecimal(arg[0].inflate().intVal.add(arg[1].inflate().intVal), arg[0].scale); } /** * Returns a BigDecimal whose value is (this + augend), * with rounding according to the context settings. * * If either number is zero and the precision setting is nonzero then * the other number, rounded if necessary, is used as the result. * * @param augend value to be added to this BigDecimal. * @param mc the context to use. * @return this + augend, rounded as necessary. * @throws ArithmeticException if the result is inexact but the * rounding mode is UNNECESSARY. * @since 1.5 */ public BigDecimal add(BigDecimal augend, MathContext mc) { if (mc.precision == 0) return add(augend); BigDecimal lhs = this; // Could optimize if values are compact this.inflate(); augend.inflate(); // If either number is zero then the other number, rounded and // scaled if necessary, is used as the result. { boolean lhsIsZero = lhs.signum() == 0; boolean augendIsZero = augend.signum() == 0; if (lhsIsZero || augendIsZero) { int preferredScale = Math.max(lhs.scale(), augend.scale()); BigDecimal result; // Could use a factory for zero instead of a new object if (lhsIsZero && augendIsZero) return new BigDecimal(BigInteger.ZERO, 0, preferredScale); result = lhsIsZero ? augend.doRound(mc) : lhs.doRound(mc); if (result.scale() == preferredScale) return result; else if (result.scale() > preferredScale) return new BigDecimal(result.intVal, result.intCompact, result.scale). stripZerosToMatchScale(preferredScale); else { // result.scale < preferredScale int precisionDiff = mc.precision - result.precision(); int scaleDiff = preferredScale - result.scale(); if (precisionDiff >= scaleDiff) return result.setScale(preferredScale); // can achieve target scale else return result.setScale(result.scale() + precisionDiff); } } } int padding = checkScale((long)lhs.scale - augend.scale); if (padding != 0) { // scales differ; alignment needed // if one operand is < 0.01 ulp of the other at full // precision, replace it by a 'sticky bit' of +0.001/-0.001 ulp. // [In a sense this is an 'optimization', but it also makes // a much wider range of additions practical.] if (padding < 0) { // lhs will be padded int ulpscale = lhs.scale - lhs.precision + mc.precision; if (augend.scale - augend.precision() > ulpscale + 1) { augend = BigDecimal.valueOf(augend.signum(), ulpscale + 3); } } else { // rhs (augend) will be padded int ulpscale = augend.scale - augend.precision + mc.precision; if (lhs.scale - lhs.precision() > ulpscale + 1) lhs = BigDecimal.valueOf(lhs.signum(), ulpscale + 3); } BigDecimal arg[] = new BigDecimal[2]; arg[0] = lhs; arg[1] = augend; matchScale(arg); lhs = arg[0]; augend = arg[1]; } return new BigDecimal(lhs.inflate().intVal.add(augend.inflate().intVal), lhs.scale).doRound(mc); } /** * Returns a BigDecimal whose value is (this - * subtrahend), and whose scale is max(this.scale(), * subtrahend.scale()). * * @param subtrahend value to be subtracted from this BigDecimal. * @return this - subtrahend */ public BigDecimal subtract(BigDecimal subtrahend) { BigDecimal arg[] = {this, subtrahend}; matchScale(arg); long x = arg[0].intCompact; long y = arg[1].intCompact; // Might be able to do a more clever check incorporating the // inflated check into the overflow computation. if (x != INFLATED && y != INFLATED) { long difference = x - y; /* * If the difference is not an overflowed value, continue * to use the compact representation. if either of x or y * is INFLATED, the difference should also be regarded as * an overflow. See "Hacker's Delight" section 2-12 for * explanation of the overflow test. */ if ( ((x ^ y) & (difference ^ x) ) >> 63 == 0L ) // not overflowed return BigDecimal.valueOf(difference, arg[0].scale); } return new BigDecimal(arg[0].inflate().intVal.subtract(arg[1].inflate().intVal), arg[0].scale); } /** * Returns a BigDecimal whose value is (this - subtrahend), * with rounding according to the context settings. * * If subtrahend is zero then this, rounded if necessary, is used as the * result. If this is zero then the result is subtrahend.negate(mc). * * @param subtrahend value to be subtracted from this BigDecimal. * @param mc the context to use. * @return this - subtrahend, rounded as necessary. * @throws ArithmeticException if the result is inexact but the * rounding mode is UNNECESSARY. * @since 1.5 */ public BigDecimal subtract(BigDecimal subtrahend, MathContext mc) { if (mc.precision == 0) return subtract(subtrahend); // share the special rounding code in add() this.inflate(); subtrahend.inflate(); BigDecimal rhs = new BigDecimal(subtrahend.intVal.negate(), subtrahend.scale); rhs.precision = subtrahend.precision; return add(rhs, mc); } /** * Returns a BigDecimal whose value is (this × * multiplicand), and whose scale is (this.scale() + * multiplicand.scale()). * * @param multiplicand value to be multiplied by this BigDecimal. * @return this * multiplicand */ public BigDecimal multiply(BigDecimal multiplicand) { long x = this.intCompact; long y = multiplicand.intCompact; int productScale = checkScale((long)scale+multiplicand.scale); // Might be able to do a more clever check incorporating the // inflated check into the overflow computation. if (x != INFLATED && y != INFLATED) { /* * If the product is not an overflowed value, continue * to use the compact representation. if either of x or y * is INFLATED, the product should also be regarded as * an overflow. See "Hacker's Delight" section 2-12 for * explanation of the overflow test. */ long product = x * y; if ( !(y != 0L && product/y != x) ) // not overflowed return BigDecimal.valueOf(product, productScale); } BigDecimal result = new BigDecimal(this.inflate().intVal.multiply(multiplicand.inflate().intVal), productScale); return result; } /** * Returns a BigDecimal whose value is (this × * multiplicand), with rounding according to the context settings. * * @param multiplicand value to be multiplied by this BigDecimal. * @param mc the context to use. * @return this * multiplicand, rounded as necessary. * @throws ArithmeticException if the result is inexact but the * rounding mode is UNNECESSARY. * @since 1.5 */ public BigDecimal multiply(BigDecimal multiplicand, MathContext mc) { if (mc.precision == 0) return multiply(multiplicand); BigDecimal lhs = this; return lhs.inflate().multiply(multiplicand.inflate()).doRound(mc); } /** * Returns a BigDecimal whose value is (this / * divisor), and whose scale is as specified. If rounding must * be performed to generate a result with the specified scale, the * specified rounding mode is applied. * *

The new {@link #divide(BigDecimal, int, RoundingMode)} method * should be used in preference to this legacy method. * * @param divisor value by which this BigDecimal is to be divided. * @param scale scale of the BigDecimal quotient to be returned. * @param roundingMode rounding mode to apply. * @return this / divisor * @throws ArithmeticException if divisor is zero, * roundingMode==ROUND_UNNECESSARY and * the specified scale is insufficient to represent the result * of the division exactly. * @throws IllegalArgumentException if roundingMode does not * represent a valid rounding mode. * @see #ROUND_UP * @see #ROUND_DOWN * @see #ROUND_CEILING * @see #ROUND_FLOOR * @see #ROUND_HALF_UP * @see #ROUND_HALF_DOWN * @see #ROUND_HALF_EVEN * @see #ROUND_UNNECESSARY */ public BigDecimal divide(BigDecimal divisor, int scale, int roundingMode) { /* * IMPLEMENTATION NOTE: This method *must* return a new object * since dropDigits uses divide to generate a value whose * scale is then modified. */ if (roundingMode < ROUND_UP || roundingMode > ROUND_UNNECESSARY) throw new IllegalArgumentException("Invalid rounding mode"); /* * Rescale dividend or divisor (whichever can be "upscaled" to * produce correctly scaled quotient). * Take care to detect out-of-range scales */ BigDecimal dividend; if (checkScale((long)scale + divisor.scale) >= this.scale) { dividend = this.setScale(scale + divisor.scale); } else { dividend = this; divisor = divisor.setScale(checkScale((long)this.scale - scale)); } boolean compact = dividend.intCompact != INFLATED && divisor.intCompact != INFLATED; long div = INFLATED; long rem = INFLATED;; BigInteger q=null, r=null; if (compact) { div = dividend.intCompact / divisor.intCompact; rem = dividend.intCompact % divisor.intCompact; } else { // Do the division and return result if it's exact. BigInteger i[] = dividend.inflate().intVal.divideAndRemainder(divisor.inflate().intVal); q = i[0]; r = i[1]; } // Check for exact result if (compact) { if (rem == 0) return new BigDecimal(div, scale); } else { if (r.signum() == 0) return new BigDecimal(q, scale); } if (roundingMode == ROUND_UNNECESSARY) // Rounding prohibited throw new ArithmeticException("Rounding necessary"); /* Round as appropriate */ int signum = dividend.signum() * divisor.signum(); // Sign of result boolean increment; if (roundingMode == ROUND_UP) { // Away from zero increment = true; } else if (roundingMode == ROUND_DOWN) { // Towards zero increment = false; } else if (roundingMode == ROUND_CEILING) { // Towards +infinity increment = (signum > 0); } else if (roundingMode == ROUND_FLOOR) { // Towards -infinity increment = (signum < 0); } else { // Remaining modes based on nearest-neighbor determination int cmpFracHalf; if (compact) { cmpFracHalf = longCompareTo(Math.abs(2*rem), Math.abs(divisor.intCompact)); } else { // add(r) here is faster than multiply(2) or shiftLeft(1) cmpFracHalf= r.add(r).abs().compareTo(divisor.intVal.abs()); } if (cmpFracHalf < 0) { // We're closer to higher digit increment = false; } else if (cmpFracHalf > 0) { // We're closer to lower digit increment = true; } else { // We're dead-center if (roundingMode == ROUND_HALF_UP) increment = true; else if (roundingMode == ROUND_HALF_DOWN) increment = false; else { // roundingMode == ROUND_HALF_EVEN if (compact) increment = (div & 1L) != 0L; else increment = q.testBit(0); // true iff q is odd } } } if (compact) { if (increment) div += signum; // guaranteed not to overflow return new BigDecimal(div, scale); } else { return (increment ? new BigDecimal(q.add(BigInteger.valueOf(signum)), scale) : new BigDecimal(q, scale)); } } /** * Returns a BigDecimal whose value is (this / * divisor), and whose scale is as specified. If rounding must * be performed to generate a result with the specified scale, the * specified rounding mode is applied. * * @param divisor value by which this BigDecimal is to be divided. * @param scale scale of the BigDecimal quotient to be returned. * @param roundingMode rounding mode to apply. * @return this / divisor * @throws ArithmeticException if divisor is zero, * roundingMode==RoundingMode.UNNECESSARY and * the specified scale is insufficient to represent the result * of the division exactly. * @since 1.5 */ public BigDecimal divide(BigDecimal divisor, int scale, RoundingMode roundingMode) { return divide(divisor, scale, roundingMode.oldMode); } /** * Returns a BigDecimal whose value is (this / * divisor), and whose scale is this.scale(). If * rounding must be performed to generate a result with the given * scale, the specified rounding mode is applied. * *

The new {@link #divide(BigDecimal, RoundingMode)} method * should be used in preference to this legacy method. * * @param divisor value by which this BigDecimal is to be divided. * @param roundingMode rounding mode to apply. * @return this / divisor * @throws ArithmeticException if divisor==0, or * roundingMode==ROUND_UNNECESSARY and * this.scale() is insufficient to represent the result * of the division exactly. * @throws IllegalArgumentException if roundingMode does not * represent a valid rounding mode. * @see #ROUND_UP * @see #ROUND_DOWN * @see #ROUND_CEILING * @see #ROUND_FLOOR * @see #ROUND_HALF_UP * @see #ROUND_HALF_DOWN * @see #ROUND_HALF_EVEN * @see #ROUND_UNNECESSARY */ public BigDecimal divide(BigDecimal divisor, int roundingMode) { return this.divide(divisor, scale, roundingMode); } /** * Returns a BigDecimal whose value is (this / * divisor), and whose scale is this.scale(). If * rounding must be performed to generate a result with the given * scale, the specified rounding mode is applied. * * @param divisor value by which this BigDecimal is to be divided. * @param roundingMode rounding mode to apply. * @return this / divisor * @throws ArithmeticException if divisor==0, or * roundingMode==RoundingMode.UNNECESSARY and * this.scale() is insufficient to represent the result * of the division exactly. */ public BigDecimal divide(BigDecimal divisor, RoundingMode roundingMode) { return this.divide(divisor, scale, roundingMode.oldMode); } /** * Returns a BigDecimal whose value is (this / * divisor), and whose preferred scale is (this.scale() - * divisor.scale()); if the exact quotient cannot be * represented (because it has a non-terminating decimal * expansion) an ArithmeticException is thrown. * * @param divisor value by which this BigDecimal is to be divided. * @throws ArithmeticException if the exact quotient does not have a * terminating decimal expansion * @return this / divisor * @since 1.5 * @author Joseph D. Darcy */ public BigDecimal divide(BigDecimal divisor) { /* * Handle zero cases first. */ if (divisor.signum() == 0) { // x/0 if (this.signum() == 0) // 0/0 throw new ArithmeticException("Division undefined"); // NaN throw new ArithmeticException("Division by zero"); } // Calculate preferred scale int preferredScale = (int)Math.max(Math.min((long)this.scale() - divisor.scale(), Integer.MAX_VALUE), Integer.MIN_VALUE); if (this.signum() == 0) // 0/y return new BigDecimal(0, preferredScale); else { this.inflate(); divisor.inflate(); /* * If the quotient this/divisor has a terminating decimal * expansion, the expansion can have no more than * (a.precision() + ceil(10*b.precision)/3) digits. * Therefore, create a MathContext object with this * precision and do a divide with the UNNECESSARY rounding * mode. */ MathContext mc = new MathContext( (int)Math.min(this.precision() + (long)Math.ceil(10.0*divisor.precision()/3.0), Integer.MAX_VALUE), RoundingMode.UNNECESSARY); BigDecimal quotient; try { quotient = this.divide(divisor, mc); } catch (ArithmeticException e) { throw new ArithmeticException("Non-terminating decimal expansion; " + "no exact representable decimal result."); } int quotientScale = quotient.scale(); // divide(BigDecimal, mc) tries to adjust the quotient to // the desired one by removing trailing zeros; since the // exact divide method does not have an explicit digit // limit, we can add zeros too. if (preferredScale > quotientScale) return quotient.setScale(preferredScale); return quotient; } } /** * Returns a BigDecimal whose value is (this / * divisor), with rounding according to the context settings. * * @param divisor value by which this BigDecimal is to be divided. * @param mc the context to use. * @return this / divisor, rounded as necessary. * @throws ArithmeticException if the result is inexact but the * rounding mode is UNNECESSARY or * mc.precision == 0 and the quotient has a * non-terminating decimal expansion. * @since 1.5 */ public BigDecimal divide(BigDecimal divisor, MathContext mc) { if (mc.precision == 0) return divide(divisor); BigDecimal lhs = this.inflate(); // left-hand-side BigDecimal rhs = divisor.inflate(); // right-hand-side BigDecimal result; // work long preferredScale = (long)lhs.scale() - rhs.scale(); // Now calculate the answer. We use the existing // divide-and-round method, but as this rounds to scale we have // to normalize the values here to achieve the desired result. // For x/y we first handle y=0 and x=0, and then normalize x and // y to give x' and y' with the following constraints: // (a) 0.1 <= x' < 1 // (b) x' <= y' < 10*x' // Dividing x'/y' with the required scale set to mc.precision then // will give a result in the range 0.1 to 1 rounded to exactly // the right number of digits (except in the case of a result of // 1.000... which can arise when x=y, or when rounding overflows // The 1.000... case will reduce properly to 1. if (rhs.signum() == 0) { // x/0 if (lhs.signum() == 0) // 0/0 throw new ArithmeticException("Division undefined"); // NaN throw new ArithmeticException("Division by zero"); } if (lhs.signum() == 0) // 0/y return new BigDecimal(BigInteger.ZERO, (int)Math.max(Math.min(preferredScale, Integer.MAX_VALUE), Integer.MIN_VALUE)); BigDecimal xprime = new BigDecimal(lhs.intVal.abs(), lhs.precision()); BigDecimal yprime = new BigDecimal(rhs.intVal.abs(), rhs.precision()); // xprime and yprime are now both in range 0.1 through 0.999... if (mc.roundingMode == RoundingMode.CEILING || mc.roundingMode == RoundingMode.FLOOR) { // The floor (round toward negative infinity) and ceil // (round toward positive infinity) rounding modes are not // invariant under a sign flip. If xprime/yprime has a // different sign than lhs/rhs, the rounding mode must be // changed. if ((xprime.signum() != lhs.signum()) ^ (yprime.signum() != rhs.signum())) { mc = new MathContext(mc.precision, (mc.roundingMode==RoundingMode.CEILING)? RoundingMode.FLOOR:RoundingMode.CEILING); } } if (xprime.compareTo(yprime) > 0) // satisfy constraint (b) yprime.scale -= 1; // [that is, yprime *= 10] result = xprime.divide(yprime, mc.precision, mc.roundingMode.oldMode); // correct the scale of the result... result.scale = checkScale((long)yprime.scale - xprime.scale - (rhs.scale - lhs.scale) + mc.precision); // apply the sign if (lhs.signum() != rhs.signum()) result = result.negate(); // doRound, here, only affects 1000000000 case. result = result.doRound(mc); if (result.multiply(divisor).compareTo(this) == 0) { // Apply preferred scale rules for exact quotients return result.stripZerosToMatchScale(preferredScale); } else { return result; } } /** * Returns a BigDecimal whose value is the integer part * of the quotient (this / divisor) rounded down. The * preferred scale of the result is (this.scale() - * divisor.scale()). * * @param divisor value by which this BigDecimal is to be divided. * @return The integer part of this / divisor. * @throws ArithmeticException if divisor==0 * @since 1.5 */ public BigDecimal divideToIntegralValue(BigDecimal divisor) { // Calculate preferred scale int preferredScale = (int)Math.max(Math.min((long)this.scale() - divisor.scale(), Integer.MAX_VALUE), Integer.MIN_VALUE); this.inflate(); divisor.inflate(); if (this.abs().compareTo(divisor.abs()) < 0) { // much faster when this << divisor return BigDecimal.valueOf(0, preferredScale); } if(this.signum() == 0 && divisor.signum() != 0) return this.setScale(preferredScale); // Perform a divide with enough digits to round to a correct // integer value; then remove any fractional digits int maxDigits = (int)Math.min(this.precision() + (long)Math.ceil(10.0*divisor.precision()/3.0) + Math.abs((long)this.scale() - divisor.scale()) + 2, Integer.MAX_VALUE); BigDecimal quotient = this.divide(divisor, new MathContext(maxDigits, RoundingMode.DOWN)); if (quotient.scale > 0) { quotient = quotient.setScale(0, RoundingMode.DOWN). stripZerosToMatchScale(preferredScale); } if (quotient.scale < preferredScale) { // pad with zeros if necessary quotient = quotient.setScale(preferredScale); } return quotient; } /** * Returns a BigDecimal whose value is the integer part * of (this / divisor). Since the integer part of the * exact quotient does not depend on the rounding mode, the * rounding mode does not affect the values returned by this * method. The preferred scale of the result is * (this.scale() - divisor.scale()). An * ArithmeticException is thrown if the integer part of * the exact quotient needs more than mc.precision * digits. * * @param divisor value by which this BigDecimal is to be divided. * @param mc the context to use. * @return The integer part of this / divisor. * @throws ArithmeticException if divisor==0 * @throws ArithmeticException if mc.precision > 0 and the result * requires a precision of more than mc.precision digits. * @since 1.5 * @author Joseph D. Darcy */ public BigDecimal divideToIntegralValue(BigDecimal divisor, MathContext mc) { if (mc.precision == 0 || // exact result (this.abs().compareTo(divisor.abs()) < 0) ) // zero result return divideToIntegralValue(divisor); // Calculate preferred scale int preferredScale = (int)Math.max(Math.min((long)this.scale() - divisor.scale(), Integer.MAX_VALUE), Integer.MIN_VALUE); /* * Perform a normal divide to mc.precision digits. If the * remainder has absolute value less than the divisor, the * integer portion of the quotient fits into mc.precision * digits. Next, remove any fractional digits from the * quotient and adjust the scale to the preferred value. */ BigDecimal result = this.divide(divisor, new MathContext(mc.precision, RoundingMode.DOWN)); int resultScale = result.scale(); if (result.scale() < 0) { /* * Result is an integer. See if quotient represents the * full integer portion of the exact quotient; if it does, * the computed remainder will be less than the divisor. */ BigDecimal product = result.multiply(divisor); if (this.subtract(product).abs().compareTo(divisor.abs()) > 0) { throw new ArithmeticException("Division impossible"); } } else if (result.scale() > 0) { /* * Integer portion of quotient will fit into precision * digits; recompute quotient to scale 0 to avoid double * rounding and then try to adjust, if necessary. */ result = result.setScale(0, RoundingMode.DOWN); } // else result.scale() == 0; int precisionDiff; if ((preferredScale > result.scale()) && (precisionDiff = mc.precision - result.precision()) > 0 ) { return result.setScale(result.scale() + Math.min(precisionDiff, preferredScale - result.scale) ); } else return result.stripZerosToMatchScale(preferredScale); } /** * Returns a BigDecimal whose value is (this % divisor). * *

The remainder is given by * this.subtract(this.divideToIntegralValue(divisor).multiply(divisor)). * Note that this is not the modulo operation (the result can be * negative). * * @param divisor value by which this BigDecimal is to be divided. * @return this % divisor. * @throws ArithmeticException if divisor==0 * @since 1.5 */ public BigDecimal remainder(BigDecimal divisor) { BigDecimal divrem[] = this.divideAndRemainder(divisor); return divrem[1]; } /** * Returns a BigDecimal whose value is (this % * divisor), with rounding according to the context settings. * The MathContext settings affect the implicit divide * used to compute the remainder. The remainder computation * itself is by definition exact. Therefore, the remainder may * contain more than mc.getPrecision() digits. * *

The remainder is given by * this.subtract(this.divideToIntegralValue(divisor, * mc).multiply(divisor)). Note that this is not the modulo * operation (the result can be negative). * * @param divisor value by which this BigDecimal is to be divided. * @param mc the context to use. * @return this % divisor, rounded as necessary. * @throws ArithmeticException if divisor==0 * @throws ArithmeticException if the result is inexact but the * rounding mode is UNNECESSARY, or mc.precision * > 0 and the result of this.divideToIntgralValue(divisor) would * require a precision of more than mc.precision digits. * @see #divideToIntegralValue(java.math.BigDecimal, java.math.MathContext) * @since 1.5 */ public BigDecimal remainder(BigDecimal divisor, MathContext mc) { BigDecimal divrem[] = this.divideAndRemainder(divisor, mc); return divrem[1]; } /** * Returns a two-element BigDecimal array containing the * result of divideToIntegralValue followed by the result of * remainder on the two operands. * *

Note that if both the integer quotient and remainder are * needed, this method is faster than using the * divideToIntegralValue and remainder methods * separately because the division need only be carried out once. * * @param divisor value by which this BigDecimal is to be divided, * and the remainder computed. * @return a two element BigDecimal array: the quotient * (the result of divideToIntegralValue) is the initial element * and the remainder is the final element. * @throws ArithmeticException if divisor==0 * @see #divideToIntegralValue(java.math.BigDecimal, java.math.MathContext) * @see #remainder(java.math.BigDecimal, java.math.MathContext) * @since 1.5 */ public BigDecimal[] divideAndRemainder(BigDecimal divisor) { // we use the identity x = i * y + r to determine r BigDecimal[] result = new BigDecimal[2]; result[0] = this.divideToIntegralValue(divisor); result[1] = this.subtract(result[0].multiply(divisor)); return result; } /** * Returns a two-element BigDecimal array containing the * result of divideToIntegralValue followed by the result of * remainder on the two operands calculated with rounding * according to the context settings. * *

Note that if both the integer quotient and remainder are * needed, this method is faster than using the * divideToIntegralValue and remainder methods * separately because the division need only be carried out once. * * @param divisor value by which this BigDecimal is to be divided, * and the remainder computed. * @param mc the context to use. * @return a two element BigDecimal array: the quotient * (the result of divideToIntegralValue) is the * initial element and the remainder is the final element. * @throws ArithmeticException if divisor==0 * @throws ArithmeticException if the result is inexact but the * rounding mode is UNNECESSARY, or mc.precision * > 0 and the result of this.divideToIntgralValue(divisor) would * require a precision of more than mc.precision digits. * @see #divideToIntegralValue(java.math.BigDecimal, java.math.MathContext) * @see #remainder(java.math.BigDecimal, java.math.MathContext) * @since 1.5 */ public BigDecimal[] divideAndRemainder(BigDecimal divisor, MathContext mc) { if (mc.precision == 0) return divideAndRemainder(divisor); BigDecimal[] result = new BigDecimal[2]; BigDecimal lhs = this; result[0] = lhs.divideToIntegralValue(divisor, mc); result[1] = lhs.subtract(result[0].multiply(divisor)); return result; } /** * Returns a BigDecimal whose value is * (thisn), The power is computed exactly, to * unlimited precision. * *

The parameter n must be in the range 0 through * 999999999, inclusive. ZERO.pow(0) returns {@link * #ONE}. * * Note that future releases may expand the allowable exponent * range of this method. * * @param n power to raise this BigDecimal to. * @return thisn * @throws ArithmeticException if n is out of range. * @since 1.5 */ public BigDecimal pow(int n) { if (n < 0 || n > 999999999) throw new ArithmeticException("Invalid operation"); // No need to calculate pow(n) if result will over/underflow. // Don't attempt to support "supernormal" numbers. int newScale = checkScale((long)scale * n); this.inflate(); return new BigDecimal(intVal.pow(n), newScale); } /** * Returns a BigDecimal whose value is * (thisn). The current implementation uses * the core algorithm defined in ANSI standard X3.274-1996 with * rounding according to the context settings. In general, the * returned numerical value is within two ulps of the exact * numerical value for the chosen precision. Note that future * releases may use a different algorithm with a decreased * allowable error bound and increased allowable exponent range. * *

The X3.274-1996 algorithm is: * *

* * @param n power to raise this BigDecimal to. * @param mc the context to use. * @return thisn using the ANSI standard X3.274-1996 * algorithm * @throws ArithmeticException if the result is inexact but the * rounding mode is UNNECESSARY, or n is out * of range. * @since 1.5 */ public BigDecimal pow(int n, MathContext mc) { if (mc.precision == 0) return pow(n); if (n < -999999999 || n > 999999999) throw new ArithmeticException("Invalid operation"); if (n == 0) return ONE; // x**0 == 1 in X3.274 this.inflate(); BigDecimal lhs = this; MathContext workmc = mc; // working settings int mag = Math.abs(n); // magnitude of n if (mc.precision > 0) { int elength = intLength(mag); // length of n in digits if (elength > mc.precision) // X3.274 rule throw new ArithmeticException("Invalid operation"); workmc = new MathContext(mc.precision + elength + 1, mc.roundingMode); } // ready to carry out power calculation... BigDecimal acc = ONE; // accumulator boolean seenbit = false; // set once we've seen a 1-bit for (int i=1;;i++) { // for each bit [top bit ignored] mag += mag; // shift left 1 bit if (mag < 0) { // top bit is set seenbit = true; // OK, we're off acc = acc.multiply(lhs, workmc); // acc=acc*x } if (i == 31) break; // that was the last bit if (seenbit) acc=acc.multiply(acc, workmc); // acc=acc*acc [square] // else (!seenbit) no point in squaring ONE } // if negative n, calculate the reciprocal using working precision if (n<0) // [hence mc.precision>0] acc=ONE.divide(acc, workmc); // round to final precision and strip zeros return acc.doRound(mc); } /** * Returns a BigDecimal whose value is the absolute value * of this BigDecimal, and whose scale is * this.scale(). * * @return abs(this) */ public BigDecimal abs() { return (signum() < 0 ? negate() : this); } /** * Returns a BigDecimal whose value is the absolute value * of this BigDecimal, with rounding according to the * context settings. * * @param mc the context to use. * @return abs(this), rounded as necessary. * @throws ArithmeticException if the result is inexact but the * rounding mode is UNNECESSARY. */ public BigDecimal abs(MathContext mc) { return (signum() < 0 ? negate(mc) : plus(mc)); } /** * Returns a BigDecimal whose value is (-this), * and whose scale is this.scale(). * * @return -this. */ public BigDecimal negate() { BigDecimal result; if (intCompact != INFLATED) result = BigDecimal.valueOf(-intCompact, scale); else { result = new BigDecimal(intVal.negate(), scale); result.precision = precision; } return result; } /** * Returns a BigDecimal whose value is (-this), * with rounding according to the context settings. * * @param mc the context to use. * @return -this, rounded as necessary. * @throws ArithmeticException if or the result is inexact but the * rounding mode is UNNECESSARY. * @since 1.5 */ public BigDecimal negate(MathContext mc) { return plus(mc).negate(); } /** * Returns a BigDecimal whose value is (+this), and whose * scale is this.scale(). * *

This method, which simply returns this BigDecimal * is included for symmetry with the unary minus method {@link * #negate()}. * * @return this. * @see #negate() * @since 1.5 */ public BigDecimal plus() { return this; } /** * Returns a BigDecimal whose value is (+this), * with rounding according to the context settings. * *

The effect of this method is identical to that of the {@link * #round(MathContext)} method. * * @param mc the context to use. * @return this, rounded as necessary. A zero result will * have a scale of 0. * @throws ArithmeticException if the result is inexact but the * rounding mode is UNNECESSARY. * @see #round(MathContext) * @since 1.5 */ public BigDecimal plus(MathContext mc) { if (mc.precision == 0) // no rounding please return this; return this.doRound(mc); } /** * Returns the signum function of this BigDecimal. * * @return -1, 0, or 1 as the value of this BigDecimal * is negative, zero, or positive. */ public int signum() { return (intCompact != INFLATED)? Long.signum(intCompact): intVal.signum(); } /** * Returns the scale of this BigDecimal. If zero * or positive, the scale is the number of digits to the right of * the decimal point. If negative, the unscaled value of the * number is multiplied by ten to the power of the negation of the * scale. For example, a scale of -3 means the unscaled * value is multiplied by 1000. * * @return the scale of this BigDecimal. */ public int scale() { return scale; } /** * Returns the precision of this BigDecimal. (The * precision is the number of digits in the unscaled value.) * *

The precision of a zero value is 1. * * @return the precision of this BigDecimal. * @since 1.5 */ public int precision() { int result = precision; if (result == 0) { result = digitLength(); precision = result; } return result; } /** * Returns a BigInteger whose value is the unscaled * value of this BigDecimal. (Computes (this * * 10this.scale()).) * * @return the unscaled value of this BigDecimal. * @since 1.2 */ public BigInteger unscaledValue() { return this.inflate().intVal; } // Rounding Modes /** * Rounding mode to round away from zero. Always increments the * digit prior to a nonzero discarded fraction. Note that this rounding * mode never decreases the magnitude of the calculated value. */ public final static int ROUND_UP = 0; /** * Rounding mode to round towards zero. Never increments the digit * prior to a discarded fraction (i.e., truncates). Note that this * rounding mode never increases the magnitude of the calculated value. */ public final static int ROUND_DOWN = 1; /** * Rounding mode to round towards positive infinity. If the * BigDecimal is positive, behaves as for * ROUND_UP; if negative, behaves as for * ROUND_DOWN. Note that this rounding mode never * decreases the calculated value. */ public final static int ROUND_CEILING = 2; /** * Rounding mode to round towards negative infinity. If the * BigDecimal is positive, behave as for * ROUND_DOWN; if negative, behave as for * ROUND_UP. Note that this rounding mode never * increases the calculated value. */ public final static int ROUND_FLOOR = 3; /** * Rounding mode to round towards "nearest neighbor" * unless both neighbors are equidistant, in which case round up. * Behaves as for ROUND_UP if the discarded fraction is * >= 0.5; otherwise, behaves as for ROUND_DOWN. Note * that this is the rounding mode that most of us were taught in * grade school. */ public final static int ROUND_HALF_UP = 4; /** * Rounding mode to round towards "nearest neighbor" * unless both neighbors are equidistant, in which case round * down. Behaves as for ROUND_UP if the discarded * fraction is > 0.5; otherwise, behaves as for * ROUND_DOWN. */ public final static int ROUND_HALF_DOWN = 5; /** * Rounding mode to round towards the "nearest neighbor" * unless both neighbors are equidistant, in which case, round * towards the even neighbor. Behaves as for * ROUND_HALF_UP if the digit to the left of the * discarded fraction is odd; behaves as for * ROUND_HALF_DOWN if it's even. Note that this is the * rounding mode that minimizes cumulative error when applied * repeatedly over a sequence of calculations. */ public final static int ROUND_HALF_EVEN = 6; /** * Rounding mode to assert that the requested operation has an exact * result, hence no rounding is necessary. If this rounding mode is * specified on an operation that yields an inexact result, an * ArithmeticException is thrown. */ public final static int ROUND_UNNECESSARY = 7; // Scaling/Rounding Operations /** * Returns a BigDecimal rounded according to the * MathContext settings. If the precision setting is 0 then * no rounding takes place. * *

The effect of this method is identical to that of the * {@link #plus(MathContext)} method. * * @param mc the context to use. * @return a BigDecimal rounded according to the * MathContext settings. * @throws ArithmeticException if the rounding mode is * UNNECESSARY and the * BigDecimal operation would require rounding. * @see #plus(MathContext) * @since 1.5 */ public BigDecimal round(MathContext mc) { return plus(mc); } /** * Returns a BigDecimal whose scale is the specified * value, and whose unscaled value is determined by multiplying or * dividing this BigDecimal's unscaled value by the * appropriate power of ten to maintain its overall value. If the * scale is reduced by the operation, the unscaled value must be * divided (rather than multiplied), and the value may be changed; * in this case, the specified rounding mode is applied to the * division. * * @param newScale scale of the BigDecimal value to be returned. * @param roundingMode The rounding mode to apply. * @return a BigDecimal whose scale is the specified value, * and whose unscaled value is determined by multiplying or * dividing this BigDecimal's unscaled value by the * appropriate power of ten to maintain its overall value. * @throws ArithmeticException if roundingMode==UNNECESSARY * and the specified scaling operation would require * rounding. * @see RoundingMode * @since 1.5 */ public BigDecimal setScale(int newScale, RoundingMode roundingMode) { return setScale(newScale, roundingMode.oldMode); } /** * Returns a BigDecimal whose scale is the specified * value, and whose unscaled value is determined by multiplying or * dividing this BigDecimal's unscaled value by the * appropriate power of ten to maintain its overall value. If the * scale is reduced by the operation, the unscaled value must be * divided (rather than multiplied), and the value may be changed; * in this case, the specified rounding mode is applied to the * division. * *

Note that since BigDecimal objects are immutable, calls of * this method do not result in the original object being * modified, contrary to the usual convention of having methods * named setX mutate field X. * Instead, setScale returns an object with the proper * scale; the returned object may or may not be newly allocated. * *

The new {@link #setScale(int, RoundingMode)} method should * be used in preference to this legacy method. * * @param newScale scale of the BigDecimal value to be returned. * @param roundingMode The rounding mode to apply. * @return a BigDecimal whose scale is the specified value, * and whose unscaled value is determined by multiplying or * dividing this BigDecimal's unscaled value by the * appropriate power of ten to maintain its overall value. * @throws ArithmeticException if roundingMode==ROUND_UNNECESSARY * and the specified scaling operation would require * rounding. * @throws IllegalArgumentException if roundingMode does not * represent a valid rounding mode. * @see #ROUND_UP * @see #ROUND_DOWN * @see #ROUND_CEILING * @see #ROUND_FLOOR * @see #ROUND_HALF_UP * @see #ROUND_HALF_DOWN * @see #ROUND_HALF_EVEN * @see #ROUND_UNNECESSARY */ public BigDecimal setScale(int newScale, int roundingMode) { if (roundingMode < ROUND_UP || roundingMode > ROUND_UNNECESSARY) throw new IllegalArgumentException("Invalid rounding mode"); if (newScale == this.scale) // easy case return this; if (this.signum() == 0) // zero can have any scale return BigDecimal.valueOf(0, newScale); if (newScale > this.scale) { // [we can use checkScale to assure multiplier is valid] int raise = checkScale((long)newScale - this.scale); if (intCompact != INFLATED) { long scaledResult = longTenToThe(intCompact, raise); if (scaledResult != INFLATED) return BigDecimal.valueOf(scaledResult, newScale); this.inflate(); } BigDecimal result = new BigDecimal(intVal.multiply(tenToThe(raise)), newScale); if (this.precision > 0) result.precision = this.precision + newScale - this.scale; return result; } // scale < this.scale // we cannot perfectly predict the precision after rounding return divide(ONE, newScale, roundingMode); } /** * Returns a BigDecimal whose scale is the specified * value, and whose value is numerically equal to this * BigDecimal's. Throws an ArithmeticException * if this is not possible. * *

This call is typically used to increase the scale, in which * case it is guaranteed that there exists a BigDecimal * of the specified scale and the correct value. The call can * also be used to reduce the scale if the caller knows that the * BigDecimal has sufficiently many zeros at the end of * its fractional part (i.e., factors of ten in its integer value) * to allow for the rescaling without changing its value. * *

This method returns the same result as the two-argument * versions of setScale, but saves the caller the trouble * of specifying a rounding mode in cases where it is irrelevant. * *

Note that since BigDecimal objects are immutable, * calls of this method do not result in the original * object being modified, contrary to the usual convention of * having methods named setX mutate field * X. Instead, setScale returns an * object with the proper scale; the returned object may or may * not be newly allocated. * * @param newScale scale of the BigDecimal value to be returned. * @return a BigDecimal whose scale is the specified value, and * whose unscaled value is determined by multiplying or dividing * this BigDecimal's unscaled value by the appropriate * power of ten to maintain its overall value. * @throws ArithmeticException if the specified scaling operation would * require rounding. * @see #setScale(int, int) * @see #setScale(int, RoundingMode) */ public BigDecimal setScale(int newScale) { return setScale(newScale, ROUND_UNNECESSARY); } // Decimal Point Motion Operations /** * Returns a BigDecimal which is equivalent to this one * with the decimal point moved n places to the left. If * n is non-negative, the call merely adds n to * the scale. If n is negative, the call is equivalent * to movePointRight(-n). The BigDecimal * returned by this call has value (this × * 10-n) and scale max(this.scale()+n, * 0). * * @param n number of places to move the decimal point to the left. * @return a BigDecimal which is equivalent to this one with the * decimal point moved n places to the left. * @throws ArithmeticException if scale overflows. */ public BigDecimal movePointLeft(int n) { // Cannot use movePointRight(-n) in case of n==Integer.MIN_VALUE int newScale = checkScale((long)scale + n); BigDecimal num; if (intCompact != INFLATED) num = BigDecimal.valueOf(intCompact, newScale); else num = new BigDecimal(intVal, newScale); return (num.scale<0 ? num.setScale(0) : num); } /** * Returns a BigDecimal which is equivalent to this one * with the decimal point moved n places to the right. * If n is non-negative, the call merely subtracts * n from the scale. If n is negative, the call * is equivalent to movePointLeft(-n). The * BigDecimal returned by this call has value (this * × 10n) and scale max(this.scale()-n, * 0). * * @param n number of places to move the decimal point to the right. * @return a BigDecimal which is equivalent to this one * with the decimal point moved n places to the right. * @throws ArithmeticException if scale overflows. */ public BigDecimal movePointRight(int n) { // Cannot use movePointLeft(-n) in case of n==Integer.MIN_VALUE int newScale = checkScale((long)scale - n); BigDecimal num; if (intCompact != INFLATED) num = BigDecimal.valueOf(intCompact, newScale); else num = new BigDecimal(intVal, newScale); return (num.scale<0 ? num.setScale(0) : num); } /** * Returns a BigDecimal whose numerical value is equal to * (this * 10n). The scale of * the result is (this.scale() - n). * * @throws ArithmeticException if the scale would be * outside the range of a 32-bit integer. * * @since 1.5 */ public BigDecimal scaleByPowerOfTen(int n) { this.inflate(); BigDecimal num = new BigDecimal(intVal, checkScale((long)scale - n)); num.precision = precision; return num; } /** * Returns a BigDecimal which is numerically equal to * this one but with any trailing zeros removed from the * representation. For example, stripping the trailing zeros from * the BigDecimal value 600.0, which has * [BigInteger, scale] components equals to * [6000, 1], yields 6E2 with [BigInteger, * scale] components equals to [6, -2] * * @return a numerically equal BigDecimal with any * trailing zeros removed. */ public BigDecimal stripTrailingZeros() { this.inflate(); return (new BigDecimal(intVal, scale)).stripZerosToMatchScale(Long.MIN_VALUE); } // Comparison Operations /** * Compares this BigDecimal with the specified * BigDecimal. Two BigDecimal objects that are * equal in value but have a different scale (like 2.0 and 2.00) * are considered equal by this method. This method is provided * in preference to individual methods for each of the six boolean * comparison operators (<, ==, >, >=, !=, <=). The * suggested idiom for performing these comparisons is: * (x.compareTo(y) <op> 0), where * <op> is one of the six comparison operators. * * @param val BigDecimal to which this BigDecimal is * to be compared. * @return -1, 0, or 1 as this BigDecimal is numerically * less than, equal to, or greater than val. */ public int compareTo(BigDecimal val) { // Optimization: would run fine without the next three lines int sigDiff = signum() - val.signum(); if (sigDiff != 0) return (sigDiff > 0 ? 1 : -1); // If the (adjusted) exponents are different we do not need to // expensively match scales and compare the significands int aethis = this.precision() - this.scale; // [-1] int aeval = val.precision() - val.scale; // [-1] if (aethis < aeval) return -this.signum(); else if (aethis > aeval) return this.signum(); // Scale and compare intVals BigDecimal arg[] = {this, val}; matchScale(arg); if (arg[0].intCompact != INFLATED && arg[1].intCompact != INFLATED) return longCompareTo(arg[0].intCompact, arg[1].intCompact); return arg[0].inflate().intVal.compareTo(arg[1].inflate().intVal); } /** * Compares this BigDecimal with the specified * Object for equality. Unlike {@link * #compareTo(BigDecimal) compareTo}, this method considers two * BigDecimal objects equal only if they are equal in * value and scale (thus 2.0 is not equal to 2.00 when compared by * this method). * * @param x Object to which this BigDecimal is * to be compared. * @return true if and only if the specified Object is a * BigDecimal whose value and scale are equal to this * BigDecimal's. * @see #compareTo(java.math.BigDecimal) * @see #hashCode */ public boolean equals(Object x) { if (!(x instanceof BigDecimal)) return false; BigDecimal xDec = (BigDecimal) x; if (scale != xDec.scale) return false; if (this.intCompact != INFLATED && xDec.intCompact != INFLATED) return this.intCompact == xDec.intCompact; return this.inflate().intVal.equals(xDec.inflate().intVal); } /** * Returns the minimum of this BigDecimal and * val. * * @param val value with which the minimum is to be computed. * @return the BigDecimal whose value is the lesser of this * BigDecimal and val. If they are equal, * as defined by the {@link #compareTo(BigDecimal) compareTo} * method, this is returned. * @see #compareTo(java.math.BigDecimal) */ public BigDecimal min(BigDecimal val) { return (compareTo(val) <= 0 ? this : val); } /** * Returns the maximum of this BigDecimal and val. * * @param val value with which the maximum is to be computed. * @return the BigDecimal whose value is the greater of this * BigDecimal and val. If they are equal, * as defined by the {@link #compareTo(BigDecimal) compareTo} * method, this is returned. * @see #compareTo(java.math.BigDecimal) */ public BigDecimal max(BigDecimal val) { return (compareTo(val) >= 0 ? this : val); } // Hash Function /** * Returns the hash code for this BigDecimal. Note that * two BigDecimal objects that are numerically equal but * differ in scale (like 2.0 and 2.00) will generally not * have the same hash code. * * @return hash code for this BigDecimal. * @see #equals(Object) */ public int hashCode() { if (intCompact != INFLATED) { long val2 = (intCompact < 0)?-intCompact:intCompact; int temp = (int)( ((int)(val2 >>> 32)) * 31 + (val2 & 0xffffffffL)); return 31*((intCompact < 0) ?-temp:temp) + scale; } else return 31*intVal.hashCode() + scale; } // Format Converters /** * Returns the string representation of this BigDecimal, * using scientific notation if an exponent is needed. * *

A standard canonical string form of the BigDecimal * is created as though by the following steps: first, the * absolute value of the unscaled value of the BigDecimal * is converted to a string in base ten using the characters * '0' through '9' with no leading zeros (except * if its value is zero, in which case a single '0' * character is used). * *

Next, an adjusted exponent is calculated; this is the * negated scale, plus the number of characters in the converted * unscaled value, less one. That is, * -scale+(ulength-1), where ulength is the * length of the absolute value of the unscaled value in decimal * digits (its precision). * *

If the scale is greater than or equal to zero and the * adjusted exponent is greater than or equal to -6, the * number will be converted to a character form without using * exponential notation. In this case, if the scale is zero then * no decimal point is added and if the scale is positive a * decimal point will be inserted with the scale specifying the * number of characters to the right of the decimal point. * '0' characters are added to the left of the converted * unscaled value as necessary. If no character precedes the * decimal point after this insertion then a conventional * '0' character is prefixed. * *

Otherwise (that is, if the scale is negative, or the * adjusted exponent is less than -6), the number will be * converted to a character form using exponential notation. In * this case, if the converted BigInteger has more than * one digit a decimal point is inserted after the first digit. * An exponent in character form is then suffixed to the converted * unscaled value (perhaps with inserted decimal point); this * comprises the letter 'E' followed immediately by the * adjusted exponent converted to a character form. The latter is * in base ten, using the characters '0' through * '9' with no leading zeros, and is always prefixed by a * sign character '-' ('\u002D') if the * adjusted exponent is negative, '+' * ('\u002B') otherwise). * *

Finally, the entire string is prefixed by a minus sign * character '-' ('\u002D') if the unscaled * value is less than zero. No sign character is prefixed if the * unscaled value is zero or positive. * *

Examples: *

For each representation [unscaled value, scale] * on the left, the resulting string is shown on the right. *

     * [123,0]      "123"
     * [-123,0]     "-123"
     * [123,-1]     "1.23E+3"
     * [123,-3]     "1.23E+5"
     * [123,1]      "12.3"
     * [123,5]      "0.00123"
     * [123,10]     "1.23E-8"
     * [-123,12]    "-1.23E-10"
     * 
* * Notes: *
    * *
  1. There is a one-to-one mapping between the distinguishable * BigDecimal values and the result of this conversion. * That is, every distinguishable BigDecimal value * (unscaled value and scale) has a unique string representation * as a result of using toString. If that string * representation is converted back to a BigDecimal using * the {@link #BigDecimal(String)} constructor, then the original * value will be recovered. * *
  2. The string produced for a given number is always the same; * it is not affected by locale. This means that it can be used * as a canonical string representation for exchanging decimal * data, or as a key for a Hashtable, etc. Locale-sensitive * number formatting and parsing is handled by the {@link * java.text.NumberFormat} class and its subclasses. * *
  3. The {@link #toEngineeringString} method may be used for * presenting numbers with exponents in engineering notation, and the * {@link #setScale(int,RoundingMode) setScale} method may be used for * rounding a BigDecimal so it has a known number of digits after * the decimal point. * *
  4. The digit-to-character mapping provided by * Character.forDigit is used. * *
* * @return string representation of this BigDecimal. * @see Character#forDigit * @see #BigDecimal(java.lang.String) */ public String toString() { if (stringCache == null) stringCache = layoutChars(true); return stringCache; } /** * Returns a string representation of this BigDecimal, * using engineering notation if an exponent is needed. * *

Returns a string that represents the BigDecimal as * described in the {@link #toString()} method, except that if * exponential notation is used, the power of ten is adjusted to * be a multiple of three (engineering notation) such that the * integer part of nonzero values will be in the range 1 through * 999. If exponential notation is used for zero values, a * decimal point and one or two fractional zero digits are used so * that the scale of the zero value is preserved. Note that * unlike the output of {@link #toString()}, the output of this * method is not guaranteed to recover the same [integer, * scale] pair of this BigDecimal if the output string is * converting back to a BigDecimal using the {@linkplain * #BigDecimal(String) string constructor}. The result of this method meets * the weaker constraint of always producing a numerically equal * result from applying the string constructor to the method's output. * * @return string representation of this BigDecimal, using * engineering notation if an exponent is needed. * @since 1.5 */ public String toEngineeringString() { return layoutChars(false); } /** * Returns a string representation of this BigDecimal * without an exponent field. For values with a positive scale, * the number of digits to the right of the decimal point is used * to indicate scale. For values with a zero or negative scale, * the resulting string is generated as if the value were * converted to a numerically equal value with zero scale and as * if all the trailing zeros of the zero scale value were present * in the result. * * The entire string is prefixed by a minus sign character '-' * ('\u002D') if the unscaled value is less than * zero. No sign character is prefixed if the unscaled value is * zero or positive. * * Note that if the result of this method is passed to the * {@linkplain #BigDecimal(String) string constructor}, only the * numerical value of this BigDecimal will necessarily be * recovered; the representation of the new BigDecimal * may have a different scale. In particular, if this * BigDecimal has a positive scale, the string resulting * from this method will have a scale of zero when processed by * the string constructor. * * (This method behaves analogously to the toString * method in 1.4 and earlier releases.) * * @return a string representation of this BigDecimal * without an exponent field. * @since 1.5 * @see #toString() * @see #toEngineeringString() */ public String toPlainString() { BigDecimal bd = this; if (bd.scale < 0) bd = bd.setScale(0); bd.inflate(); if (bd.scale == 0) // No decimal point return bd.intVal.toString(); return bd.getValueString(bd.signum(), bd.intVal.abs().toString(), bd.scale); } /* Returns a digit.digit string */ private String getValueString(int signum, String intString, int scale) { /* Insert decimal point */ StringBuilder buf; int insertionPoint = intString.length() - scale; if (insertionPoint == 0) { /* Point goes right before intVal */ return (signum<0 ? "-0." : "0.") + intString; } else if (insertionPoint > 0) { /* Point goes inside intVal */ buf = new StringBuilder(intString); buf.insert(insertionPoint, '.'); if (signum < 0) buf.insert(0, '-'); } else { /* We must insert zeros between point and intVal */ buf = new StringBuilder(3-insertionPoint + intString.length()); buf.append(signum<0 ? "-0." : "0."); for (int i=0; i<-insertionPoint; i++) buf.append('0'); buf.append(intString); } return buf.toString(); } /** * Converts this BigDecimal to a BigInteger. * This conversion is analogous to a narrowing * primitive conversion from double to * long as defined in the Java Language * Specification: any fractional part of this * BigDecimal will be discarded. Note that this * conversion can lose information about the precision of the * BigDecimal value. *

* To have an exception thrown if the conversion is inexact (in * other words if a nonzero fractional part is discarded), use the * {@link #toBigIntegerExact()} method. * * @return this BigDecimal converted to a BigInteger. */ public BigInteger toBigInteger() { // force to an integer, quietly return this.setScale(0, ROUND_DOWN).inflate().intVal; } /** * Converts this BigDecimal to a BigInteger, * checking for lost information. An exception is thrown if this * BigDecimal has a nonzero fractional part. * * @return this BigDecimal converted to a BigInteger. * @throws ArithmeticException if this has a nonzero * fractional part. * @since 1.5 */ public BigInteger toBigIntegerExact() { // round to an integer, with Exception if decimal part non-0 return this.setScale(0, ROUND_UNNECESSARY).inflate().intVal; } /** * Converts this BigDecimal to a long. This * conversion is analogous to a narrowing * primitive conversion from double to * short as defined in the Java Language * Specification: any fractional part of this * BigDecimal will be discarded, and if the resulting * "BigInteger" is too big to fit in a * long, only the low-order 64 bits are returned. * Note that this conversion can lose information about the * overall magnitude and precision of this BigDecimal value as well * as return a result with the opposite sign. * * @return this BigDecimal converted to a long. */ public long longValue(){ return (intCompact != INFLATED && scale == 0) ? intCompact: toBigInteger().longValue(); } /** * Converts this BigDecimal to a long, checking * for lost information. If this BigDecimal has a * nonzero fractional part or is out of the possible range for a * long result then an ArithmeticException is * thrown. * * @return this BigDecimal converted to a long. * @throws ArithmeticException if this has a nonzero * fractional part, or will not fit in a long. * @since 1.5 */ public long longValueExact() { if (intCompact != INFLATED && scale == 0) return intCompact; // If more than 19 digits in integer part it cannot possibly fit if ((precision() - scale) > 19) // [OK for negative scale too] throw new java.lang.ArithmeticException("Overflow"); // Fastpath zero and < 1.0 numbers (the latter can be very slow // to round if very small) if (this.signum() == 0) return 0; if ((this.precision() - this.scale) <= 0) throw new ArithmeticException("Rounding necessary"); // round to an integer, with Exception if decimal part non-0 BigDecimal num = this.setScale(0, ROUND_UNNECESSARY).inflate(); if (num.precision() >= 19) { // need to check carefully if (LONGMIN == null) { // initialize constants LONGMIN = BigInteger.valueOf(Long.MIN_VALUE); LONGMAX = BigInteger.valueOf(Long.MAX_VALUE); } if ((num.intVal.compareTo(LONGMIN) < 0) || (num.intVal.compareTo(LONGMAX) > 0)) throw new java.lang.ArithmeticException("Overflow"); } return num.intVal.longValue(); } // These constants are only initialized if needed /** BigInteger equal to Long.MIN_VALUE. */ private static BigInteger LONGMIN = null; /** BigInteger equal to Long.MAX_VALUE. */ private static BigInteger LONGMAX = null; /** * Converts this BigDecimal to an int. This * conversion is analogous to a narrowing * primitive conversion from double to * short as defined in the Java Language * Specification: any fractional part of this * BigDecimal will be discarded, and if the resulting * "BigInteger" is too big to fit in an * int, only the low-order 32 bits are returned. * Note that this conversion can lose information about the * overall magnitude and precision of this BigDecimal * value as well as return a result with the opposite sign. * * @return this BigDecimal converted to an int. */ public int intValue() { return (intCompact != INFLATED && scale == 0) ? (int)intCompact : toBigInteger().intValue(); } /** * Converts this BigDecimal to an int, checking * for lost information. If this BigDecimal has a * nonzero fractional part or is out of the possible range for an * int result then an ArithmeticException is * thrown. * * @return this BigDecimal converted to an int. * @throws ArithmeticException if this has a nonzero * fractional part, or will not fit in an int. * @since 1.5 */ public int intValueExact() { long num; num = this.longValueExact(); // will check decimal part if ((int)num != num) throw new java.lang.ArithmeticException("Overflow"); return (int)num; } /** * Converts this BigDecimal to a short, checking * for lost information. If this BigDecimal has a * nonzero fractional part or is out of the possible range for a * short result then an ArithmeticException is * thrown. * * @return this BigDecimal converted to a short. * @throws ArithmeticException if this has a nonzero * fractional part, or will not fit in a short. * @since 1.5 */ public short shortValueExact() { long num; num = this.longValueExact(); // will check decimal part if ((short)num != num) throw new java.lang.ArithmeticException("Overflow"); return (short)num; } /** * Converts this BigDecimal to a byte, checking * for lost information. If this BigDecimal has a * nonzero fractional part or is out of the possible range for a * byte result then an ArithmeticException is * thrown. * * @return this BigDecimal converted to a byte. * @throws ArithmeticException if this has a nonzero * fractional part, or will not fit in a byte. * @since 1.5 */ public byte byteValueExact() { long num; num = this.longValueExact(); // will check decimal part if ((byte)num != num) throw new java.lang.ArithmeticException("Overflow"); return (byte)num; } /** * Converts this BigDecimal to a float. * This conversion is similar to the narrowing * primitive conversion from double to * float defined in the Java Language * Specification: if this BigDecimal has too great a * magnitude to represent as a float, it will be * converted to {@link Float#NEGATIVE_INFINITY} or {@link * Float#POSITIVE_INFINITY} as appropriate. Note that even when * the return value is finite, this conversion can lose * information about the precision of the BigDecimal * value. * * @return this BigDecimal converted to a float. */ public float floatValue(){ if (scale == 0 && intCompact != INFLATED) return (float)intCompact; // Somewhat inefficient, but guaranteed to work. return Float.parseFloat(this.toString()); } /** * Converts this BigDecimal to a double. * This conversion is similar to the narrowing * primitive conversion from double to * float as defined in the Java Language * Specification: if this BigDecimal has too great a * magnitude represent as a double, it will be * converted to {@link Double#NEGATIVE_INFINITY} or {@link * Double#POSITIVE_INFINITY} as appropriate. Note that even when * the return value is finite, this conversion can lose * information about the precision of the BigDecimal * value. * * @return this BigDecimal converted to a double. */ public double doubleValue(){ if (scale == 0 && intCompact != INFLATED) return (double)intCompact; // Somewhat inefficient, but guaranteed to work. return Double.parseDouble(this.toString()); } /** * Returns the size of an ulp, a unit in the last place, of this * BigDecimal. An ulp of a nonzero BigDecimal * value is the positive distance between this value and the * BigDecimal value next larger in magnitude with the * same number of digits. An ulp of a zero value is numerically * equal to 1 with the scale of this. The result is * stored with the same scale as this so the result * for zero and nonzero values is equal to [1, * this.scale()]. * * @return the size of an ulp of this * @since 1.5 */ public BigDecimal ulp() { return BigDecimal.valueOf(1, this.scale()); } // Private "Helper" Methods /** * Lay out this BigDecimal into a char[] array. * The Java 1.2 equivalent to this was called getValueString. * * @param sci true for Scientific exponential notation; * false for Engineering * @return string with canonical string representation of this * BigDecimal */ private String layoutChars(boolean sci) { if (scale == 0) // zero scale is trivial return (intCompact != INFLATED) ? Long.toString(intCompact): intVal.toString(); // Get the significand as an absolute value char coeff[]; if (intCompact != INFLATED) coeff = Long.toString(Math.abs(intCompact)).toCharArray(); else coeff = intVal.abs().toString().toCharArray(); // Construct a buffer, with sufficient capacity for all cases. // If E-notation is needed, length will be: +1 if negative, +1 // if '.' needed, +2 for "E+", + up to 10 for adjusted exponent. // Otherwise it could have +1 if negative, plus leading "0.00000" StringBuilder buf=new StringBuilder(coeff.length+14); if (signum() < 0) // prefix '-' if negative buf.append('-'); long adjusted = -(long)scale + (coeff.length-1); if ((scale >= 0) && (adjusted >= -6)) { // plain number int pad = scale - coeff.length; // count of padding zeros if (pad >= 0) { // 0.xxx form buf.append('0'); buf.append('.'); for (; pad>0; pad--) { buf.append('0'); } buf.append(coeff); } else { // xx.xx form buf.append(coeff, 0, -pad); buf.append('.'); buf.append(coeff, -pad, scale); } } else { // E-notation is needed if (sci) { // Scientific notation buf.append(coeff[0]); // first character if (coeff.length > 1) { // more to come buf.append('.'); buf.append(coeff, 1, coeff.length-1); } } else { // Engineering notation int sig = (int)(adjusted % 3); if (sig < 0) sig += 3; // [adjusted was negative] adjusted -= sig; // now a multiple of 3 sig++; if (signum() == 0) { switch (sig) { case 1: buf.append('0'); // exponent is a multiple of three break; case 2: buf.append("0.00"); adjusted += 3; break; case 3: buf.append("0.0"); adjusted += 3; break; default: throw new AssertionError("Unexpected sig value " + sig); } } else if (sig >= coeff.length) { // significand all in integer buf.append(coeff, 0, coeff.length); // may need some zeros, too for (int i = sig - coeff.length; i > 0; i--) buf.append('0'); } else { // xx.xxE form buf.append(coeff, 0, sig); buf.append('.'); buf.append(coeff, sig, coeff.length-sig); } } if (adjusted != 0) { // [!sci could have made 0] buf.append('E'); if (adjusted > 0) // force sign for positive buf.append('+'); buf.append(adjusted); } } return buf.toString(); } /** * Return 10 to the power n, as a BigInteger. * * @param n the power of ten to be returned (>=0) * @return a BigInteger with the value (10n) */ private static BigInteger tenToThe(int n) { if (n < TENPOWERS.length) // use value from constant array return TENPOWERS[n]; // BigInteger.pow is slow, so make 10**n by constructing a // BigInteger from a character string (still not very fast) char tenpow[] = new char[n + 1]; tenpow[0] = '1'; for (int i = 1; i <= n; i++) tenpow[i] = '0'; return new BigInteger(tenpow); } private static BigInteger TENPOWERS[] = {BigInteger.ONE, BigInteger.valueOf(10), BigInteger.valueOf(100), BigInteger.valueOf(1000), BigInteger.valueOf(10000), BigInteger.valueOf(100000), BigInteger.valueOf(1000000), BigInteger.valueOf(10000000), BigInteger.valueOf(100000000), BigInteger.valueOf(1000000000)}; /** * Compute val * 10 ^ n; return this product if it is * representable as a long, INFLATED otherwise. */ private static long longTenToThe(long val, int n) { // System.err.print("\tval " + val + "\t power " + n + "\tresult "); if (n >= 0 && n < thresholds.length) { if (Math.abs(val) <= thresholds[n][0] ) { // System.err.println(val * thresholds[n][1]); return val * thresholds[n][1]; } } // System.err.println(INFLATED); return INFLATED; } private static long thresholds[][] = { {Long.MAX_VALUE, 1L}, // 0 {Long.MAX_VALUE/10L, 10L}, // 1 {Long.MAX_VALUE/100L, 100L}, // 2 {Long.MAX_VALUE/1000L, 1000L}, // 3 {Long.MAX_VALUE/10000L, 10000L}, // 4 {Long.MAX_VALUE/100000L, 100000L}, // 5 {Long.MAX_VALUE/1000000L, 1000000L}, // 6 {Long.MAX_VALUE/10000000L, 10000000L}, // 7 {Long.MAX_VALUE/100000000L, 100000000L}, // 8 {Long.MAX_VALUE/1000000000L, 1000000000L}, // 9 {Long.MAX_VALUE/10000000000L, 10000000000L}, // 10 {Long.MAX_VALUE/100000000000L, 100000000000L}, // 11 {Long.MAX_VALUE/1000000000000L, 1000000000000L},// 12 {Long.MAX_VALUE/100000000000000L, 10000000000000L},// 13 }; private static boolean compactLong(long val) { return (val != Long.MIN_VALUE); } /** * Assign appropriate BigInteger to intVal field if intVal is * null, i.e. the compact representation is in use. */ private BigDecimal inflate() { if (intVal == null) intVal = BigInteger.valueOf(intCompact); return this; } /** * Match the scales of two BigDecimals to align their * least significant digits. * *

If the scales of val[0] and val[1] differ, rescale * (non-destructively) the lower-scaled BigDecimal so * they match. That is, the lower-scaled reference will be * replaced by a reference to a new object with the same scale as * the other BigDecimal. * * @param val array of two elements referring to the two * BigDecimals to be aligned. */ private static void matchScale(BigDecimal[] val) { if (val[0].scale < val[1].scale) val[0] = val[0].setScale(val[1].scale); else if (val[1].scale < val[0].scale) val[1] = val[1].setScale(val[0].scale); } /** * Reconstitute the BigDecimal instance from a stream (that is, * deserialize it). * * @param s the stream being read. */ private synchronized void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { // Read in all fields s.defaultReadObject(); // validate possibly bad fields if (intVal == null) { String message = "BigDecimal: null intVal in stream"; throw new java.io.StreamCorruptedException(message); // [all values of scale are now allowed] } // Set intCompact to uninitialized value; could also see if the // intVal was small enough to fit as a compact value. intCompact = INFLATED; } /** * Serialize this BigDecimal to the stream in question * * @param s the stream to serialize to. */ private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { // Must inflate to maintain compatible serial form. this.inflate(); // Write proper fields s.defaultWriteObject(); } /** * Returns the length of this BigDecimal, in decimal digits. * * Notes: *