/* * Copyright 2001-2004 The Apache Software Foundation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * $Id: Step.java,v 1.46 2004/02/24 04:21:22 zongaro Exp $ */ package com.sun.org.apache.xalan.internal.xsltc.compiler; import java.util.Vector; import com.sun.org.apache.bcel.internal.generic.CHECKCAST; import com.sun.org.apache.bcel.internal.generic.ConstantPoolGen; import com.sun.org.apache.bcel.internal.generic.ICONST; import com.sun.org.apache.bcel.internal.generic.INVOKEINTERFACE; import com.sun.org.apache.bcel.internal.generic.INVOKESPECIAL; import com.sun.org.apache.bcel.internal.generic.InstructionList; import com.sun.org.apache.bcel.internal.generic.NEW; import com.sun.org.apache.bcel.internal.generic.PUSH; import com.sun.org.apache.xalan.internal.xsltc.DOM; import com.sun.org.apache.xalan.internal.xsltc.compiler.util.ClassGenerator; import com.sun.org.apache.xalan.internal.xsltc.compiler.util.MethodGenerator; import com.sun.org.apache.xalan.internal.xsltc.compiler.util.Type; import com.sun.org.apache.xalan.internal.xsltc.compiler.util.TypeCheckError; import com.sun.org.apache.xalan.internal.xsltc.dom.Axis; import com.sun.org.apache.xml.internal.dtm.DTM; /** * @author Jacek Ambroziak * @author Santiago Pericas-Geertsen * @author Morten Jorgensen */ final class Step extends RelativeLocationPath { /** * This step's axis as defined in class Axis. */ private int _axis; /** * A vector of predicates (filters) defined on this step - may be null */ private Vector _predicates; /** * Some simple predicates can be handled by this class (and not by the * Predicate class) and will be removed from the above vector as they are * handled. We use this boolean to remember if we did have any predicates. */ private boolean _hadPredicates = false; /** * Type of the node test. */ private int _nodeType; public Step(int axis, int nodeType, Vector predicates) { _axis = axis; _nodeType = nodeType; _predicates = predicates; } /** * Set the parser for this element and all child predicates */ public void setParser(Parser parser) { super.setParser(parser); if (_predicates != null) { final int n = _predicates.size(); for (int i = 0; i < n; i++) { final Predicate exp = (Predicate)_predicates.elementAt(i); exp.setParser(parser); exp.setParent(this); } } } /** * Define the axis (defined in Axis class) for this step */ public int getAxis() { return _axis; } /** * Get the axis (defined in Axis class) for this step */ public void setAxis(int axis) { _axis = axis; } /** * Returns the node-type for this step */ public int getNodeType() { return _nodeType; } /** * Returns the vector containing all predicates for this step. */ public Vector getPredicates() { return _predicates; } /** * Returns the vector containing all predicates for this step. */ public void addPredicates(Vector predicates) { if (_predicates == null) { _predicates = predicates; } else { _predicates.addAll(predicates); } } /** * Returns 'true' if this step has a parent pattern. * This method will return 'false' if this step occurs on its own under * an element like or . */ private boolean hasParentPattern() { final SyntaxTreeNode parent = getParent(); return (parent instanceof ParentPattern || parent instanceof ParentLocationPath || parent instanceof UnionPathExpr || parent instanceof FilterParentPath); } /** * Returns 'true' if this step has any predicates */ private boolean hasPredicates() { return _predicates != null && _predicates.size() > 0; } /** * Returns 'true' if this step is used within a predicate */ private boolean isPredicate() { SyntaxTreeNode parent = this; while (parent != null) { parent = parent.getParent(); if (parent instanceof Predicate) return true; } return false; } /** * True if this step is the abbreviated step '.' */ public boolean isAbbreviatedDot() { return _nodeType == NodeTest.ANODE && _axis == Axis.SELF; } /** * True if this step is the abbreviated step '..' */ public boolean isAbbreviatedDDot() { return _nodeType == NodeTest.ANODE && _axis == Axis.PARENT; } /** * Type check this step. The abbreviated steps '.' and '@attr' are * assigned type node if they have no predicates. All other steps * have type node-set. */ public Type typeCheck(SymbolTable stable) throws TypeCheckError { // Save this value for later - important for testing for special // combinations of steps and patterns than can be optimised _hadPredicates = hasPredicates(); // Special case for '.' // in the case where '.' has a context such as book/. // or .[false()] we can not optimize the nodeset to a single node. if (isAbbreviatedDot()) { _type = (hasParentPattern() || hasPredicates() ) ? Type.NodeSet : Type.Node; } else { _type = Type.NodeSet; } // Type check all predicates (expressions applied to the step) if (_predicates != null) { final int n = _predicates.size(); for (int i = 0; i < n; i++) { final Expression pred = (Expression)_predicates.elementAt(i); pred.typeCheck(stable); } } // Return either Type.Node or Type.NodeSet return _type; } /** * Translate a step by pushing the appropriate iterator onto the stack. * The abbreviated steps '.' and '@attr' do not create new iterators * if they are not part of a LocationPath and have no filters. * In these cases a node index instead of an iterator is pushed * onto the stack. */ public void translate(ClassGenerator classGen, MethodGenerator methodGen) { final ConstantPoolGen cpg = classGen.getConstantPool(); final InstructionList il = methodGen.getInstructionList(); if (hasPredicates()) { translatePredicates(classGen, methodGen); } else { int star = 0; String name = null; final XSLTC xsltc = getParser().getXSLTC(); if (_nodeType >= DTM.NTYPES) { final Vector ni = xsltc.getNamesIndex(); name = (String)ni.elementAt(_nodeType-DTM.NTYPES); star = name.lastIndexOf('*'); } // If it is an attribute, but not '@*', '@pre:*' or '@node()', // and has no parent if (_axis == Axis.ATTRIBUTE && _nodeType != NodeTest.ATTRIBUTE && _nodeType != NodeTest.ANODE && !hasParentPattern() && star == 0) { int iter = cpg.addInterfaceMethodref(DOM_INTF, "getTypedAxisIterator", "(II)"+NODE_ITERATOR_SIG); il.append(methodGen.loadDOM()); il.append(new PUSH(cpg, Axis.ATTRIBUTE)); il.append(new PUSH(cpg, _nodeType)); il.append(new INVOKEINTERFACE(iter, 3)); return; } // Special case for '.' if (isAbbreviatedDot()) { if (_type == Type.Node) { // Put context node on stack if using Type.Node il.append(methodGen.loadContextNode()); } else { // Wrap the context node in a singleton iterator if not. int init = cpg.addMethodref(SINGLETON_ITERATOR, "", "("+NODE_SIG+")V"); il.append(new NEW(cpg.addClass(SINGLETON_ITERATOR))); il.append(DUP); il.append(methodGen.loadContextNode()); il.append(new INVOKESPECIAL(init)); } return; } // Special case for /foo/*/bar SyntaxTreeNode parent = getParent(); if ((parent instanceof ParentLocationPath) && (parent.getParent() instanceof ParentLocationPath)) { if ((_nodeType == NodeTest.ELEMENT) && (!_hadPredicates)) { _nodeType = NodeTest.ANODE; } } // "ELEMENT" or "*" or "@*" or ".." or "@attr" with a parent. switch (_nodeType) { case NodeTest.ATTRIBUTE: _axis = Axis.ATTRIBUTE; case NodeTest.ANODE: // DOM.getAxisIterator(int axis); int git = cpg.addInterfaceMethodref(DOM_INTF, "getAxisIterator", "(I)"+NODE_ITERATOR_SIG); il.append(methodGen.loadDOM()); il.append(new PUSH(cpg, _axis)); il.append(new INVOKEINTERFACE(git, 2)); break; default: if (star > 1) { final String namespace; if (_axis == Axis.ATTRIBUTE) namespace = name.substring(0,star-2); else namespace = name.substring(0,star-1); final int nsType = xsltc.registerNamespace(namespace); final int ns = cpg.addInterfaceMethodref(DOM_INTF, "getNamespaceAxisIterator", "(II)"+NODE_ITERATOR_SIG); il.append(methodGen.loadDOM()); il.append(new PUSH(cpg, _axis)); il.append(new PUSH(cpg, nsType)); il.append(new INVOKEINTERFACE(ns, 3)); break; } case NodeTest.ELEMENT: // DOM.getTypedAxisIterator(int axis, int type); final int ty = cpg.addInterfaceMethodref(DOM_INTF, "getTypedAxisIterator", "(II)"+NODE_ITERATOR_SIG); // Get the typed iterator we're after il.append(methodGen.loadDOM()); il.append(new PUSH(cpg, _axis)); il.append(new PUSH(cpg, _nodeType)); il.append(new INVOKEINTERFACE(ty, 3)); break; } } } /** * Translate a sequence of predicates. Each predicate is translated * by constructing an instance of CurrentNodeListIterator * which is initialized from another iterator (recursive call), * a filter and a closure (call to translate on the predicate) and "this". */ public void translatePredicates(ClassGenerator classGen, MethodGenerator methodGen) { final ConstantPoolGen cpg = classGen.getConstantPool(); final InstructionList il = methodGen.getInstructionList(); int idx = 0; if (_predicates.size() == 0) { translate(classGen, methodGen); } else { final Predicate predicate = (Predicate)_predicates.lastElement(); _predicates.remove(predicate); // Special case for predicates that can use the NodeValueIterator // instead of an auxiliary class. Certain path/predicates pairs // are translated into a base path, on top of which we place a // node value iterator that tests for the desired value: // foo[@attr = 'str'] -> foo/@attr + test(value='str') // foo[bar = 'str'] -> foo/bar + test(value='str') // foo/bar[. = 'str'] -> foo/bar + test(value='str') if (predicate.isNodeValueTest()) { Step step = predicate.getStep(); il.append(methodGen.loadDOM()); // If the predicate's Step is simply '.' we translate this Step // and place the node test on top of the resulting iterator if (step.isAbbreviatedDot()) { translate(classGen, methodGen); il.append(new ICONST(DOM.RETURN_CURRENT)); } // Otherwise we create a parent location path with this Step and // the predicates Step, and place the node test on top of that else { ParentLocationPath path = new ParentLocationPath(this,step); try { path.typeCheck(getParser().getSymbolTable()); } catch (TypeCheckError e) { } path.translate(classGen, methodGen); il.append(new ICONST(DOM.RETURN_PARENT)); } predicate.translate(classGen, methodGen); idx = cpg.addInterfaceMethodref(DOM_INTF, GET_NODE_VALUE_ITERATOR, GET_NODE_VALUE_ITERATOR_SIG); il.append(new INVOKEINTERFACE(idx, 5)); } // Handle '//*[n]' expression else if (predicate.isNthDescendant()) { il.append(methodGen.loadDOM()); // il.append(new ICONST(NodeTest.ELEMENT)); il.append(new ICONST(predicate.getPosType())); predicate.translate(classGen, methodGen); il.append(new ICONST(0)); idx = cpg.addInterfaceMethodref(DOM_INTF, "getNthDescendant", "(IIZ)"+NODE_ITERATOR_SIG); il.append(new INVOKEINTERFACE(idx, 4)); } // Handle 'elem[n]' expression else if (predicate.isNthPositionFilter()) { idx = cpg.addMethodref(NTH_ITERATOR_CLASS, "", "("+NODE_ITERATOR_SIG+"I)V"); il.append(new NEW(cpg.addClass(NTH_ITERATOR_CLASS))); il.append(DUP); translatePredicates(classGen, methodGen); // recursive call predicate.translate(classGen, methodGen); il.append(new INVOKESPECIAL(idx)); } else { idx = cpg.addMethodref(CURRENT_NODE_LIST_ITERATOR, "", "(" + NODE_ITERATOR_SIG + CURRENT_NODE_LIST_FILTER_SIG + NODE_SIG + TRANSLET_SIG + ")V"); // create new CurrentNodeListIterator il.append(new NEW(cpg.addClass(CURRENT_NODE_LIST_ITERATOR))); il.append(DUP); translatePredicates(classGen, methodGen); // recursive call predicate.translateFilter(classGen, methodGen); il.append(methodGen.loadCurrentNode()); il.append(classGen.loadTranslet()); if (classGen.isExternal()) { final String className = classGen.getClassName(); il.append(new CHECKCAST(cpg.addClass(className))); } il.append(new INVOKESPECIAL(idx)); } } } /** * Returns a string representation of this step. */ public String toString() { final StringBuffer buffer = new StringBuffer("step(\""); buffer.append(Axis.names[_axis]).append("\", ").append(_nodeType); if (_predicates != null) { final int n = _predicates.size(); for (int i = 0; i < n; i++) { final Predicate pred = (Predicate)_predicates.elementAt(i); buffer.append(", ").append(pred.toString()); } } return buffer.append(')').toString(); } }